反比例的意义精编5篇
【路引】由阿拉题库网美丽的网友为您整理分享的“反比例的意义精编5篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
《反比例》数学教案1
三维目标
一、知识与技能
1.能灵活列反比例函数表达式解决一些实际问题.
2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.
二、过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.
2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
三、情感态度与价值观
1.积极参与交流,并积极发表意见.
2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.
教学重点
掌握从物理问题中建构反比例函数模型.
教学难点
从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.
教具准备
多媒体课件.
教学过程
一、创设问题情境,引入新课
活动1
问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.
在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.
(1)求I与R之间的函数关系式;
(2)当电流I=时,求电阻R的值.
设计意图:
运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.
师生行为:
可由学生独立思考,领会反比例函数在物理学中的综合应用.
教师应给“学困生”一点物理学知识的引导.
师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值.
生:(1)解:设I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 当I=时,R=10I= =20(欧姆).
师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?
生:这是古希腊科学家阿基米德的名言.
师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;
阻力×阻力臂=动力×动力臂(如下图)
下面我们就来看一例子.
二、讲授新课
活动2
小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.
(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.()5米时,撬动石头至少需要多大的力?
(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?
设计意图:
物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.
师生行为:
先由学生根据“杠杆定律”解决上述问题.
教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.
教师在此活动中应重点关注:
①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;
②学生能否面对困难,认真思考,寻找解题的途径;
③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.
师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.
生:解:(1)根据“杠杆定律” 有
Fl=1200×.得F =600l
当l=时,F= =400.
因此,撬动石头至少需要400牛顿的力.
(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有
Fl=600,
l=600F .
当F=400×12 =200时,
l=600200 =3.
3-=(米)
因此,若想用力不超过400牛顿的一半,则动力臂至少要如长米.
生:也可用不等式来解,如下:
Fl=600,F=600l .
而F≤400×12 =200时.
600l ≤200
l≥3.
所以l-≥3-=.
即若想用力不超过400牛顿的一半,则动力臂至少要加长米.
生:还可由函数图象,利用反比例函数的性质求出.
师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:
用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?
生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)
根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力.
师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.
活动3
问题:某地上年度电价为元,年用电量为1亿度,本年度计划将电价调至~元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=.(1)求y与x之间的函数关系式;(2)若每度电的成本价元,电价调至元,请你预算一下本年度电力部门的纯收人多少?
设计意图:
在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.
师生行为:
由学生先独立思考,然后小组内讨论完成.
教师应给予“学困生”以一定的帮助.
生:解:(1)∵y与x -0.4成反比例,
∴设y=kx- (k≠0).
把x=,y=代入y=kx- ,得
- =.
解得k=,
∴y=-=15x-2
∴y与x之间的函数关系为y=15x-2
(2)根据题意,本年度电力部门的纯收入为
(-)(1+y)=(1+15x-2 )=(1+×5-2 )=×2=(亿元)
答:本年度的纯收人为亿元,
师生共析:
(1)由题目提供的信息知y与(x-)之间是反比例函数关系,把x-看成一个变量,于是可设出表达式,再由题目的条件x=时,y=得出字母系数的值;
(2)纯收入=总收入-总成本.
三、巩固提高
活动4
一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ= kg/m3时二氧化碳气体的体积V的值.
设计意图:
进一步体现物理和反比例函数的关系.
师生行为
由学生独立完成,教师讲评.
师:若要求出ρ= kg/m3时,V的值,首先V和ρ的函数关系.
生:V和ρ的反比例函数关系为:V=990ρ .
生:当ρ=/m3根据V=990ρ ,得
V=990ρ = =900(m3).
所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3.
四、课时小结
活动5
你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得.
设计意图:
这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.
师生行为:
学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流.
教师组织学生小结.
反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.
板书设计
17.2 实际问题与反比例函数(三)
1.
2.用反比例函数的知识解释:在我们使 用撬棍时,为什么动 力臂越长越省力?
设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理,
Fl=k 即F=kl (k>0且k为常数).
由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小.
活动与探究
学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.
(1)绿化带面积是多少?你能写出这一函数表达式吗?
(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?
x(m) 10 20 30 40
y(m)
过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.
结果:(1)绿化带面积为10×40=400(m2)
设该反比例函数的表达式为y=kx ,
∵图象经过点A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函数表达式为y=400x .
(2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403 ,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。
读书破万卷下笔如有神,以上就是差异网为大家整理的5篇《反比例的意义》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。
《反比例》数学教案2
教学过程设计
一、创设情境 引入课题
活动1
问题:
你们还记得一次函数图象与性质吗?
设计意图
通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。
师生形为:
教师提出问题。学生思考、交流,回答问题。教师根据学生活动情况进行补充和完善。
二、类比联想 探究交流
活动2
问题:
例2 画出反比例函数y= 与y=- 的图象。
(教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。)
设计意图:
通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。
师生形为:
学生可以先自己动手画图,相互观摩。
在此活动中,教师应重点关注:
1学生能否顺利进行三种表示方法的相互转换:
2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;
3在动手作图的过程中,能否勤于动手,乐于探索。
比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?
(由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。)
设计意图:
学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。
师生形为:
学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。
教师参与到学生的讨论中去,积极引导。
(三)探索比较 发现规律
活动3
问题:
观察反比例函数y= 与y=- 的图象。
你能发现它们的共同特征以及不同点吗?
每个函数的图象分别位于哪几个象限?
在每一个象限内,y随x的变化如何变化?
由学生分小组讨论,观察思考后进行分析、归纳,得到反比例函数y= 的性质:
形状: 反比例函数的图象是由两支双曲线组成的。因此称反比例函数的图象为双曲线;
位置: 当k0时,两支双曲线分别位于第一,三象限内,在每个象限内y随x增大而减小;当k0时,两支双曲线分别位于第二,四象限内,在每个象限内y随x增大而增大;
任意一组变量的乘积是一个定值,即xy=k.
(注意:双曲线的两个分支都不会与x轴,y轴相交。)
学生通过对反比例函数图象进行观察、分析,总结出了反比例函数的性质,使学生明白性质的可靠性;通过对函数图象的位置与k值符号关系的探讨,以及反比例函数的两个分支在相应的象限内,y随x值的增大(或减小)而增大(或减小)的探讨,有利于加深学生对性质的理解和掌握;使学生经历从特殊到一般的过程,体验知识产生、形成的过程,逐步达到培养学生抽象概括能力和激发求知欲望;同时通过对反比例函数增减性的讨论,对学生进行辩证唯物主义思想教育。
四、 运用新知 拓展训练
设计意图:
拓展练习是为了让学生灵活运用反比例函数性质解决问题,学生在研究问题的特点时,能够紧扣性质进行分析,达到理解并掌握性质的目的。
师生形为:
学生独立思考完成。
教师巡视,引导学困生完成任务。
五、归纳总结 布置作业
问题:
本节课学习了哪些知识?在知识应用过程中需要注意什么?你有什么收获?
《反比例》数学教案3
1、成正比例的量
教学内容:成正比例的量
教学目标:
1、使学生理解正比例的意义,会正确判断成正比例的量。
2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
教学重点:正比例的意义。
教学难点:正确判断两个量是否成正比例的关系。
教学过程:
一揭示课题
1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?
在教师的此导下,学生会举出一些简单的例子,如:
(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量
二探索新知
1.教学例1
(1)出示例题情境图。
问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)出示表格。
高度/㎝24681012
体积/㎝350100150200250300
底面积/㎝2
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25㎝2。
板书:
教师:体积与高度的比值一定。
(2)说明正比例的意义。
①在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
②学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一,两种相关联的量;
第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三,两个量的比值一定。
(3)用字母表示。
如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:
(4)想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
地砖的面积一定,教室地板面积和地砖块数成正比例。
2.教学例2。
(1)出示表格(见书)
(2)依据下表中的数据描点。(见书)
(3)从图中你发现了什么?
这些点都在同一条直线上。
(4)看图回答问题。
①如果杯中水的高度是7㎝,那么水的体积是多少?
生:175㎝3。
②体积是225㎝3的水,杯里水面高度是多少?
生:9㎝。
③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?
生:水的体积是350㎝3,相对应的点一定在这条直线上。
(5)你还能提出什么问题?有什么体会?
通过交流使学生了解成正比例量的图像特往。
3.做一做。
过程要求:
(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?
比值表示每小时行驶多少千米。
(2)表中的路程和时间成正比例吗?为什么?
成正比例。理由:
①路程随着时间的变化而变化;
②时间增加,路程也增加,时间减少,路程也随着减少;
③种程和时间的比值(速度)一定。
(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。
(4)行驶120KM大约要用多少时间?
(5)你还能提出什么问题?
4.课堂小结
说一说成正比例关系的量的变化特征。
三巩固练习
完成课文练习七第1~5题。
2、成反比例的量
教学内容:成反比例的量
教学目标:
1.经历探索两种相关联的量的变化情况过程,发现规律,理解反比例的意义。
2.根据反比例的意义,正确判断两种量是否成反比例。
教学重点:反比例的。意义。
教学难点:正确判断两种量是否成反比例。
教学过程:
一导入新课
1.让学生说一说成正比例的两种量的变化规律。
回答要点:
(1)两种相关联的量;
(2)一个量增加,另一个量也相应增加;一个量减少,另一个量也相应减少;
(3)两个量的比值一定。
2.举例说明。
如:每袋大米质量相同,大米的袋数与总质量成正比例。
理由:
(1)每袋大米质量一定,大米的总质量随着袋数的变化而变化;
(2)大米的袋数增加,大米的总质量也相应增加,大米的袋数
减少,大米的总质量也相应减少;
(3)总质量与袋数的比值一定。
所以,大米的袋数与总质量成正比例。
板书:
3.揭示课题。
今天,我们一起来学习反比例。两种量是什么样的关系时,这两种量成反比例呢?
板书课题:成反比例的量[ 内 容 结 束 ]
小学六年级下册数学《反比例》教案4
教学目标:
1.通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例
2.培养学生的逻辑思维能力
3.感知生活中的数学知识
重点难点1.通过具体问题认识反比例的量。
2.掌握成反比例的量的变化规律及其 特征
教学难点:
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程:
一、课前预习
预习24---26页内容
1、什么是成反比例的量?你是怎么理解的?
2、情境一中的两个表中量变化关系相同吗?
3、三个情境中的两个量哪些是成反比例的量?为什么?
二、展示与交流
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律
情境(一)
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考
同桌交流,用自己的语言表达
写出关系式:速度×时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定
情境(三)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系
写出关系式:每杯果汁量×杯数=果汗总量(一定)
5、以上两个情境中有什么共同点?
反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
活动四:想一想
二、 反馈与检测
1、判断下面每题是否成反比例
(1)出油率一定,香油的质量与芝麻的质量。
(2)三角形的面积一定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积一定,底面积和高。
(6)小林做10道数学题,已做的题和没有做的题。
(7)长方形的长一定,面积和宽。
(8)平行四边形面积一定,底和高。
2、教材“练一练”P33第1题。
3、教材“练一练”P33第2题。
4、找一找生活中成反比例的例子,并与同伴交流。
《反比例》数学教案5
教学过程:
一、复习铺垫
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱元,1本;元,2本;元,4本;元6本。
2、成正比例的量有什么特征?
二、探究新知
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。
2、教学P42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
A、表中有哪两种量?这两种量相关联吗?为什么?
B、水的高度是否随着底面积的变化而变化?怎样变化的?
C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?
D、这个积表示什么?写出表示它们之间的数量关系式
(2)从中你发现了什么?这与复习题相比有什么不同?
A、学生讨论交流。
B、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)
三、巩固练习
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习
P45~46练习七第6~11题。
教学目的:
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。
教学难点:利用反比例的意义,正确判断两个量是否成反比例。