首页 > 学习资料 > 教案大全 >

反比例函数教案设计(精编3篇)

网友发表时间 488516

【路引】由阿拉题库网美丽的网友为您整理分享的“反比例函数教案设计(精编3篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

《反比例函数》教学设计1

教学重点:

理解和领会反比例函数的概念.

教学难点:

领悟反比例的概念.

教学过程:

一、创设情境,导入新课

活动1

问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?

(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;

(3)已知北京市的总面积为×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.

师生行为:

先让学生进行小组合作交流,再进行全班性的问答或交流。学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.

教师组织学生讨论,提问学生,师生互动.

在此活动中老师应重点关注学生:

①能否积极主动地合作交流.

②能否用语言说明两个变量间的关系.

③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.

分析及解答:(1);(2);(3)

其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;

上面的函数关系式,都具有的形式,其中k是常数.

二、联系生活,丰富联想

活动2

下列问题中,变量间的对应关系可用这样的函数式表示?

(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;

(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;

(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.

师生行为

学生先独立思考,在进行全班交流.

教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:

(1)能否从现实情境中抽象出两个变量的函数关系;

(2)能否积极主动地参与小组活动;

(3)能否比较深刻地领会函数、反比例函数的概念.

分析及解答:(1);(2);(3)

概念:如果两个变量x,y之间的关系可以表示成的`形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.

活动3

做一做:

一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?

师生行为:

学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:

①生能否理解反比例函数的意义,理解反比例函数的概念;

②学生能否顺利抽象反比例函数的模型;

③学生能否积极主动地合作、交流;

活动4

问题1:下列哪个等式中的y是x的反比例函数?

问题2:已知y是x的反比例函数,当x=2时,y=6

(1)写出y与x的函数关系式:

(2)求当x=4时,y的值.

师生行为:

学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:

①学生能否领会反比例函数的意义,理解反比例函数的概念;

②学生能否积极主动地参与小组活动.

分析及解答:

1.只有xy=123是反比例函数.

2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.

解:(1)设,因为x=2时,y=6,所以有解得k=12

三、巩固提高

活动5

1.已知y是x的反比例函数,并且当x=3时,y=?8.

(1)写出y与x之间的函数关系式.

(2)求y=2时x的值.

2.y是x的反比例函数,下表给出了x与y的一些值:

(1)写出这个反比例函数的表达式;

(2)根据函数表达式完成上表.

学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.

四、课时小结

反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.

它山之石可以攻玉,以上就是差异网为大家带来的3篇《反比例函数教案设计》,能够给予您一定的参考与启发,是差异网的价值所在。

反比例函数教案2

教学目标:

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的 概念。

教学程序:

一、导入:

1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。

2 、U=IR,当U=220V时,

(1)你能用含 R的代数式 表示I吗?

(2)利用写出的关系式完成下表:

R(Ω) 20 40 60 80 100

I(A)

当R越来越大时,I怎样 变化?

当R越来越小呢?

( 3)变量I是R的函数吗?为什么?

答:① I = UR

② 当R越来越大时,I越来越小,当R越来越小时,I越来越大。

③变量I是R的函数 。当给定一 个R的值时,相应地就确定了一个I值,因此I是R的函数。

二、新授:

1、反比例函数的概念

一般地,如果两个变量x, y之间的关系可以表示成 y=kx (k为常数,k≠0)的形式,那么称y是x的反比例函 数。

反比例函数的自变量x 不能为零。

2、做一做

一个矩形的 面积为20cm2,相邻两条边长分别为xcm和 ycm,那么变量y是变量x的 函数吗?是反比例函数吗?

解:y=20x ,是反比例函数。

三、课堂练习

P133,12

四、作业:

P133,习题 1、2题

反比例函数教学反思3

反比例函数教学体会

反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数。笔者针对学生的薄弱点从反比例函数的概念出发,通过反比例函数的。图像与性质的应用,使学生具备正确运用本章知识答题的意识。

作 者:耿明亮  作者单位:安徽省淮化中学,232038 刊 名:上海中学数学 英文刊名:SCHOOL MATHEMATICS IN SHANGHAI 年,卷(期): “”(12) 分类号:G63 关键词:

相关推荐

热门文档

20 488516