八年级上册数学教案【最新5篇】
【路引】由阿拉题库网美丽的网友为您整理分享的“八年级上册数学教案【最新5篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
八年级上册数学教案【第一篇】
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
所用时间t(分钟)人数
0 0<≤ 6 20 30 40 50 (1)、第二组数据的组中值是多少? (2)、求该班学生平均每天做数学作业所用时间 2、某班40名学生身高情况如下图, 请计算该班学生平均身高 答案1.(1)。15. (2)28. 2. 165 六、课后练习: 1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表 部门A B C D E F G 人数1 1 2 4 2 2 5 每人创得利润20 5 2 该公司每人所创年利润的平均数是多少万元? 2、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄? 年龄频数 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。 答案:1.约万元2.约29岁分贝 教学目标 知识与技能 1、初步理解方程的解和解方程的含义。 2、结合图例,理解根据等式的性质解方程的方法并进行检验。 3、掌握解方程的格式和写法。 过程与方法 经历方程的解和解方程的认识过程,提高学生比较、分析的能力。 情感态度与价值观 在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验的学习习惯。 教学重难点 重点:理解方程的解和解方程的含义。 难点:会检验方程的解。 教学工具 多媒体设备 教学过程 教学过程设计 1 复习旧知,迁移导入 (1)在上一节课的学习活动中,我们探究了哪些规律? 学生回顾天平保持平衡的规律及等式保持不变的规律。 (2)学习这些规律有什么用呢?今天我们解方程就需要充分利用等式的基本性质。 板书课题:解方程(1) 2 合作探究,获取新知 教学教材第67页例1。 (1)课件出示例1。 从图中知道哪些信息?学生观察图片,交流图片数学信息。盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到χ+3=9 学生自己先列出方程,然后指名回答。 板书:χ+3=9 如何解方程?要求盒子中一共有多少个皮球,也就是求等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢? (2)出示第67页分析图示,学生观察图示,交流想法。 根据学生的汇报,板书解方程的过程: (3)为什么方程两边同时减去3,而不是别的数? 引导学生得出结论:因为,两边减去3以后,左边刚好剩下一个χ,这样,右边就刚好是χ的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个χ即可。 追问:χ=6带不带单位呢?让学生明白χ在这里只代表一个数值,因此不带单位。 (4)如何检验χ=6是不是正确的答案?引导学生学习检验方程的解得方法,根据学生回答板书。 板书: 小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。利用等式的基本性质,可以帮助我们解方程。 注意:在书写的过程中写的都是等式,而不是递等式。 (5)认识、区别方程的解和解方程。 ①使方程左右两边相等的未知知数的值,叫做方程的解,刚才,χ=6就是方程χ+3=9的解。而求方程的解的过程叫做解方程,刚才,想出办法求出χ+3=9的过程就是解方程。 板书:使方程左右两边相等的未知知数的值,叫做方程的解 求方程的解的过程叫做解方程。 ②方程的解和解方程这两个概念说起来差不多,但它们的意义却大不相同,它们之间的有何不同? 在小组内议一议,明确,方程的解是一个具体的值,而解方程是一个求解的过程。 ③刚才我们把χ=6代入方程中,得到方程左边=右边,说明χ=6是方程χ+3=9的解。 教学教材第68页例2。 (1)利用等式不变的规律,我们再来解一个方程。 出示例2:解方程3χ=18 怎样才能求到1个χ是多少呢? 观察示意图,互相讨论,指名回答。 在方程两边同时除以3,得到χ=6。 让学生打开书68页,把例2中的解题过程补充完整。 为什么两边同时除以的是3,而不是其它数呢? 两边同时除以3,刚好把左边变成1个χ。 使学生明确:在方程的两边同时除以一个不为0的数,方程左右两边仍然相等。 (2)组织学生动手检验。 (3)这是我们解方程常用的两种方法,想不想用它们来试一试呢? 教学教材第68页例3。 (1)出示:解方程20-χ=9 (2)指名学生板演,解出方程20-χ=9的解。 (3)交流归纳解方程的方法。 (4)小结:等式两边加上相同的式子,左右两边仍然相等。 3 深化理解,拓展应用 (1)随堂练习 ①、完成“做一做”的第1、2题,集体评讲,强调验算。 ②、思考:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么? 等式保持不变的规律。 (2)拓展练习 亮亮今年9岁,爸爸今年37岁。几年后妈妈的年龄是小华的3倍? 4 自主评价,全课总结 你觉得自己今天学会了什么?还有什么不太理解的地方? 讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢? 课后习题 练习十五1—5题。 板书 所以,χ=6是方程的解。 使方程左右两边相等的未知数的值,叫方程的解。 求方程的解的过程叫解方程。 一、教材分析教材的地位和作用: 本节内容是第一课时《轴对称》,本节立足于学生已有的生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时本节内容与图形的三种变换操作(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,使学生从对图形的感性认识上升到对轴对称的理性认识,为进一步学习轴对称性质及后面学习等腰三角形和圆等有关知识奠定基础。同时这一节也是联系数学与生活的桥梁。 二、学情分析 八年级学生有一定的知识水平,已经初步形成了一定观察能力、语言表达能力,这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,因此,这节课通过观察生活中的实例和动手实践,让学生自己去发现和总结轴对称图形和轴对称的概念及它们之间的区别与联系是切实可行的。 三、教学目标及重点、难点的确定 根据新课程标准、教材内容特点、和学生已有的认知结构、心理特征,我确定本节教学目标、重点、难点如下: (一)教学目标: 1、知识技能 (1)理解并掌握轴对称图形的概念,对称轴;能准确判断哪些事物是轴对称图形;找出轴对称图形的对称轴。 (2)理解并掌握轴对称的概念,对称轴;了解对称点。 (3)了解轴对称图形和轴对称的联系与区别。 2、过程与方法目标 经历“观察——比较——操作——概括——总结一应用”的学习过程,培养学生的动手实践能力、抽象思维和语言表达能力。 3、情感、态度与价值观 通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,培养学生的学习兴趣,热爱生活的情感和欣赏图形的对称美。 (二)教学重点:轴对称图形和轴对称的有关概念。 (三)教学难点:轴对称图形与轴对称的联系、区别 。四、教法和学法设计 本节课根据教材内容的特点和八年级学生的知识结构和心理特征。我选择的: 教法策略采用以直观演示法和实验发现法为主,设疑诱导法为辅。教学中教学中通过丰富的图片展示,创设出问题情景,诱导学生思考、操作,教师适时地演示,并运用多媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,使不同层次学生的知识水平得到恰当的发展和提高。 学法策略:让学生在“观察----比较——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。 辅助策略我利用多媒体课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率 五、说程序设计: 新的课程标准指出学生的学习内容应该是现实的有意义的,有利于学生进行观察、试验、猜测、验证、推理与交流等数学活动。为了达到预期的教学目标,我对整个教学过程进行了设计。 (一)、观图激趣、设疑导入。 出示图片,设计故事。一日,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。你能说出为什么长得象吗?今天我们就来共同探讨这一问题――轴对称。 [设计意图]以兴趣为先导,创设学生喜闻乐见的故事情景,激发了学生浓厚的学习兴趣, (二)、实践探索、感悟特征。 《活动一(课件演示)观察这些图形有什么特点?》在这个环节中我首先出示一组常见的具有代表性的典型的轴对称图形,出示后先让学生自己观察,并引导学生感知,无论是随风起舞的风筝,凌空翱翔的飞机,还是古今中外各式风格的典型建筑很多图形都给我们以美得感受。然后,教师适时提出问题:这些图形有什么共同特征?是如何对称?怎样才能使对称?部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。从而引出轴对称图形和对称轴的概念。在得出概念之后再引导学生例举生活中的事例。以便加深对轴对称图形概念的理解。 为了进一步认识轴对称图形的特点又出示了一组练习 (练习1)这是一组常见几何图形,要求学生判断是否是对称图形,若是对称图形的,画出它的对称轴 [设计意图]通过这个练习题不仅让学生巩固了轴对称图形的概念,而且让学生认识到我们常见的图形,有些是轴对称图形,有些不是轴对称图形。并且还让学生认识轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条甚至无数条,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。 (练习2)国家的一个象征,观察下面的国旗,哪些是轴对称图形?试找出它们的对称轴。次题进一步巩固了轴对称图形的概念,培养了学生的观察能力、想象能力,同时通过展示各国的国旗,不仅激发了学生的学习兴趣,而且也拓展了学生的知识面。 (三)、动手操作、再度探索新知。 将一张纸对折,用笔尖扎出一个图案,然后将纸展开后,铺平,观察各自得到的图案与轴对称图形的不同。教学中注重学生活动,鼓励学生亲自实践,积极思考,在乐学的氛围中,培养学生的动手能力,从而引出轴对称概念。 再次引导学生讨论、归纳得出轴对称的概念……。之后再结合动画演示加深对轴对称概念的理解,进而引出对称轴、对称点的概念。并结合图形加以认识。 (四)、巩固练习、升华新知。 出示几幅图形,请同学们辨别哪幅图形是轴对称图形哪些图形轴对称, 在这组练习中让学生动手、动口、动眼、动脑,充分调动了学生的各种感官参与学习,既加深了对两个概念的理解,又锻炼了同学的各方面能力。完成这组练习题后让学生,归纳轴对称图形及轴对称区别与联系,先让学生自己归纳,然后用多媒体展示。 (课件演示)轴对称图形及两个图形成轴对称区别与联系 (五)、综合练习、发展思维。 1、抢答;观察周围哪些事物的形状是轴对称图形。 2、判断: 生活中不仅有些物体的形状是轴对称图形,我们所学的数字、字母和汉字中也有一些可以看成轴对称图形。 (1)下面的数字或字母,哪些是轴对称图形?它们各有几条对称轴? 0123456789ABCDEFGH 3、像这样写法的汉字哪些是轴对称图形? 口工用中由日直水清甲 (这几道题的练习做到了知识性、技能性、思想性和艺术性溶为一体。这样设计,不但活跃了课堂气氛,又检查了学生掌握新知的情况,而且激发了学生的学习兴趣,又让学生感到数学就在自己的身边) (六)归纳小结、布置作业 [设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。作业布置要有层次,照顾学生个体差异使不同的人在数学上获得不同的发展! 六、设计说明 这节课,我依据课程标准、教材特点、遵循学生的认知规律。通过六个环节的教学设计,通过观察生活中的一些图案以及动画演示,由感性到理性,让学生轻松掌握了轴对称图形与关于直线成轴对称两个概念,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑,使学生学有兴趣、学有所获。这就是我对本节课的理解和说明。 教学目标 1、 理解并掌握等腰三角形的判定定理及推论 2、 能利用其性质与判定证明线段或角的相等关系。 教学重点: 等腰三角形的判定定理及推论的运用 教学难点: 正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系。 教学过程: 一、复习等腰三角形的性质 二、新授: I提出问题,创设情境 出示投影片。某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度。 学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”。 II引入新课 1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗? 作一个两个角相等的三角形,然后观察两等角所对的边有什么关系? 2.引导学生根据图形,写出已知、求证。 2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称). 强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。 4.引导学生说出引例中地质专家的测量方法的根据。 教学目标 1、知识与技能:会推导平方差公式,并且懂得运用平方差公式进行简单计算。 2、过程与方法:经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。 3、情感、态度与价值观:通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。 教学重难点 重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。 难点:平方差公式的应用。 关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。 教学过程 情境设置:教师请一位学生讲一讲《狗熊掰棒子》的故事 学生活动:1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。 教师归纳:听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗? 学生回答:多项式乘以多项式。 教师激发:大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。 计算: (1)(x+2)(x—2);(2)(1+3a)(1—3a); (2)(x+5y)(x—5y);(4)(y+3z)(y—3z)。 做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。 学生活动:分四人小组,合作学习,获得以下结果: (1)(x+2)(x—2)=x2—4; (2)(1+3a)(1—3a)=1—9a2; (3)(x+5y)(x—5y)=x2—25y2; (4)(y+3z)(y—3z)=y2—9z2。 教师活动:请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。数学八年级上册优秀教案【第二篇】
八年级上册数学教案【第三篇】
八年级上册数学教案【第四篇】
八年级上册数学教案【第五篇】