首页 > 学习资料 > 教案大全 >

人教版八年级上册数学教案【优秀5篇】

网友发表时间 367756

【导言】此例“人教版八年级上册数学教案【优秀5篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

人教版八年级数学上册教案【第一篇】

知识目标:理解变量与函数的概念以及相互之间的关系

能力目标:增强对变量的理解

情感目标:渗透事物是运动的,运动是有规律的辨证思想

重点:变量与常量

难点:对变量的判断

教学媒体:多媒体电脑,绳圈

教学说明:本节渗透找变量之间的简单关系,试列简单关系式

教学设计:

引入:

信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?

信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时间为th,先填写下面的表格,在试用含t的式子表示s.

t/m 1 2 3 4 5

s/km

新课:

问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?

(2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长,怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?

(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积s的式子表示圆的半径r?

(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为sm2,怎样用含x的式子表示s?

在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。

指出上述问题中的变量和常量。

范例:写出下列各问题中所满足的`关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?

(1)用总长为60m的篱笆围成矩形场地,求矩形的面积s(m2)与一边长x(m)之间的关系式;

(2)购买单价是元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;

(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;

(4)银行规定:五年期存款的年利率为%,则某人存入x元本金与所得的本息和y(元)之间的关系。

活动:

1.分别指出下列各式中的常量与变量。

(1)圆的面积公式s=πr2;

(2)正方形的l=4a;

(3)大米的单价为元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=

2.写出下列问题的关系式,并指出不、常量和变量。

(1)某种活期储蓄的月利率为%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式。

(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是s,求s与n之间的关系式。

思考:怎样列变量之间的关系式?

小结:变量与常量

作业:阅读教材5页,函数

八年级数学上册教案【第二篇】

教学目标:

1.使学生理解集合的含义,知道常用集合及其记法;

2.使学生初步了解“属于”关系和集合相等的意义,初步了解有限集、无限集、空集的意义;

3.使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合。

教学重点:

集合的含义及表示方法。

教学过程:

一、问题情境

1.情境

新生自我介绍:介绍家庭、原毕业学校、班级。

2.问题

在介绍的过程中,常常涉及像“家庭”、“学校”、“班级”、“男生”、“女生”等概念,这些概念与“学生xx”相比,它们有什么共同的特征?

二、学生活动

1.介绍自己;

2.列举生活中的集合实例;

3.分析、概括各集合实例的共同特征。

三、数学建构

1.集合的含义:一般地,一定范围内不同的、确定的对象的全体组成一个集合。构成集合的每一个个体都叫做集合的一个元素。

2.元素与集合的关系及符号表示:属于,不属于。

3.集合的表示方法:

另集合一般可用大写的拉丁字母简记为“集合A、集合B”。

4.常用数集的记法:自然数集N,正整数集N*,整数集Z,有理数集Q,实数集R。

5.有限集,无限集与空集。

6.有关集合知识的历史简介。

四、数学运用

1.例题

例1 表示出下列集合:

(1)中国的直辖市;

(2)中国国旗上的颜色。

小结:集合的确定性和无序性

例2 准确表示出下列集合:

(1)方程x2―2x-3=0的解集;

(2)不等式2-x<0的解集;

(3)不等式组 的解集;

(4)不等式组2x-1≤-33x+1≥0的解集。

小结:

(1)集合的`表示方法——列举法与描述法;

(2)集合的分类——有限集,无限集、空集。

例3 将下列用描述法表示的集合改为列举法表示:

(1){(x,)| x+ = 3,x N, N }

(2){(x,)| = x2-1,|x |≤2,x Z }

(3){| x+ = 3,x N, N }

(4){ x R | x3-2x2+x=0}

小结:常用数集的记法与作用。

例4 完成下列各题:

(1)若集合A={ x|ax+1=0}=,求实数a的值;

(2)若-3{ a-3,2a-1,a2-4},求实数a。

小结:集合与元素之间的关系。

2.练习:

(1)用列举法表示下列集合:

①{ x|x+1=0};

②{ x|x为15的正约数};

③{ x|x 为不大于10的正偶数};

④{(x,)|x+=2且x-2=4};

⑤{(x,)|x∈{1,2},∈{1,3}};

⑥{(x,)|3x+2=16,x∈N,∈N}。

(2)用描述法表示下列集合:

①奇数的集合;

②正偶数的集合;

③{1,4,7,10,13}

五、回顾小结

(1)集合的概念——集合、元素、属于、不属于、有限集、无限集、空集;

(2)集合的表示——列举法、描述法以及Venn图;

(3)集合的元素与元素的个数;

(4)常用数集的记法。

六、作业

课本第7页练习3,4两题。

八年级数学上册教案【第三篇】

教学目标

知识与技能:会推导平方差公式,并且懂得运用平方差公式进行简单计算。

过程与方法:经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

情感、态度与价值观:通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

教学重难点

重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

难点:平方差公式的应用。

关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

教学过程

一、创设情境,故事引入

情境设置教师请一位学生讲一讲《狗熊掰棒子》的故事

学生活动1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

教师归纳听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?

学生回答多项式乘以多项式。

教师激发大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的。错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

问题牵引计算:

(1)(x+2)(x—2);(2)(1+3a)(1—3a);

(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

学生活动分四人小组,合作学习,获得以下结果:

(1)(x+2)(x—2)=x2—4;

(2)(1+3a)(1—3a)=1—9a2;

(3)(x+5y)(x—5y)=x2—25y2;

(4)(y+3z)(y—3z)=y2—9z2。

教师活动请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

学生活动讨论

教师引导刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?

学生回答可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。

教师活动表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。

二、范例学习,应用所学

教师讲述

平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。

运用平方差公式计算:

(1)(2x+3)(2x—3);

(2)(b+3a)(3a—b);

(3)(—m+n)(—m—n)。

人教版八年级数学上册教案【第四篇】

教学目标

(一)教学知识点

1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义。

2.理解积的乘方运算法则,能解决一些实际问题。

(二)能力训练要求

1.在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力。

2.学习积的。乘方的运算法则,提高解决问题的能力。

(三)情感与价值观要求

在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美。

教学重点

积的乘方运算法则及其应用。

教学难点

幂的运算法则的灵活运用。

教学方法

自学─引导相结合的方法。

同底数幂的乘法、幂的乘方、积的乘方成一个体系,研究方法类同,有前两节课做基础,本节课可放手让学生自学,教师引导学生总结,从而让学生真正理解幂的运算方法,能解决一些实际问题。

教具准备

投影片.

教学过程

Ⅰ.提出问题,创设情境

[师]还是就上节课开课提出的问题:若已知一个正方体的棱长为×103cm,你能计算出它的体积是多少吗?

[生]它的体积应是V=(×103)3cm3。

[师]这个结果是幂的乘方形式吗?

[生]不是,底数是和103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理。

[师]你分析得很有道理,积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥秒。

Ⅱ.导入新课

老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳。

出示投影片

1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?

(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()

(2)(ab)3=______=_______=a()b()

(3)(ab)n=______=______=a()b()(n是正整数)

2.把你发现的规律用文字语言表述,再用符号语言表达。

3.解决前面提到的正方体体积计算问题。

4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法。

5.完成课本P170例3。

学生探究的经过:

1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则。同样的方法可以算出(2)、(3)题。

人教版八年级上册数学教案【第五篇】

教学目标:

1. 通过生活中的事例,使学生初步体会什么是轴对称图形。

2. 让学生通过看一看,折一折,剪一剪来加深对轴对称图形的理解。

3. 让学生应用所学知识来解决实际生活中简单的问题,初步培养学生的应用意识和实践能力。

教学重点:

1. 了解轴对称图形的特征,能在方格纸上画出简单图形的轴对称图形。

2. 能正确判断轴对称图形。

教学难点:

画出轴对称图形。

教学准备:

课件剪刀 彩色卡纸 平行四边形纸

一、 情境导入

1. 谈话:看到同学们一张张可爱的笑脸,老师非常开心。

课件出示不对称“脸图”问:“这张脸可爱吗?”

生:不可爱!

课件演示脸图由不对称变为对称,问:现在呢?

生:可爱!

师:看来,人人都喜欢美丽的东西。今天老师给大家带来了一些美丽的图片,请欣赏。

2.图片欣赏 (课件出示对称图形图片)

看完图片后师问:这些图片中的图形有什么特点?(指名回答)

学生可能会说,它们两边完全一样。

教师归纳学生的回答后说明:它们都是对称图形(板书:对称图形)

二、 探究新知

1.认识轴对称图形

师:在我们的生活中,还有很多事物都是对称的。

看,这是笑笑自己剪的一棵对称的小松树,你们想不想也动手剪一剪呢?(课件出示小松树的剪纸图形)

生:想!

师:老师和你们来一场比赛,看谁剪的又快又好,开始!

师生同时动手剪,完成后教师把自己剪的贴在黑板上。

请剪的最快的学生拿剪出的小松树展示,并让他给到大家说说是怎么剪的。(指导学生演示方法)

问演示学生:你怎么让大家知道你剪的小松树是对称的呢?

生:我把它对折(生边说边演示)(师板书:对折)

师:同学们跟他一起把自己剪的小松树对折,对折后你们有什么发现?

生:左右两边完全重合(师板书:完全重合)

师演示左右对折并讲解,像这样把图形沿一条直线对折,图形的两边能够完全重合,我们就说这个图形是轴对称图形。(出示概念,补充课题:轴对称

图形)

生齐读概念

2.认识对称轴

师:把你们的对称图形打开,观察图形中间有什么?

生:有一条直直的折痕。

师:这条折痕所在的这条直线叫做对称轴(板书:对称轴)

出示感念,生齐读。

师演示并带领学生画对称轴(强调用虚线)

我们认识了新朋友轴对称图形,现在这位新朋友在和我们玩捉迷藏呢!

三、 实际应用

1.看一看,说一说,下面哪些图形是轴对称图形?(课件出示课本13页图)

生应用所学知识判断,教师点评。

师:这位新朋友留给大家的印象非常深刻,我们很容易就发现了它,你们能把这些对称图形的对称轴画出来吗?

生动手画对称轴,师巡视指导,完成后订正。

师:轴对称的图形不单单生活中有,在我们天天接触的数字、汉字、字母中也同样存在,看,这儿还有轴对称图形吗?

2.找出下列图形中的轴对称图形(课件出示课本14页第1题)

生找出轴对称图形,并说说每个图形的对称轴在哪儿。

师:聪明的同学们能找轴对称图形,聪明的你们会画轴对称图形吗?

3.出示课本14页第3题

师用第一个图演示讲解画轴对称图形的要点:一看对称轴;二找关键点;三定对应点;四画对称图。

生在剩下的两个图形中选择一个动手画,完成后展示成果,全班点评。 师:同学们既能找,也能画,那肯定也能判断了。请看(课件出示)

4.下面哪些图形中的红线是对称轴?

师:看来同学们已经知道了很多轴对称图形

(出示导课时的“脸图”可爱的笑脸也是轴对称图形,你们有没有发现我们的身边还有许多的轴对称事物呀?)

生找身边的轴对称事物。

四、全课小结

我们身边轴对称的事物还有很多,轴对称的图形是美丽的,漂亮的,请同学们谈谈通过这节课的学学习,你有什么收获?

生:畅谈收获。

师:你们想知道老师有什么收获吗?(想)

老师今天收获了一份愉快的心情!

板书设计:

完全

轴对称图形 对称轴 重合

相关推荐

热门文档

20 367756