首页 > 学习资料 > 教案大全 >

八年级上册数学教案(最新4篇)

网友发表时间 241444

【导言】此例“八年级上册数学教案(最新4篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

人教版八年级数学上册教案【第一篇】

知识目标:理解变量与函数的概念以及相互之间的关系

能力目标:增强对变量的理解

情感目标:渗透事物是运动的,运动是有规律的辨证思想

重点:变量与常量

难点:对变量的判断

教学媒体:多媒体电脑,绳圈

教学说明:本节渗透找变量之间的简单关系,试列简单关系式

教学设计:

引入:

信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?

信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时间为th,先填写下面的表格,在试用含t的式子表示s.

t/m 1 2 3 4 5

s/km

新课:

问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?

(2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长,怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?

(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积s的式子表示圆的半径r?

(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为sm2,怎样用含x的式子表示s?

在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。

指出上述问题中的变量和常量。

范例:写出下列各问题中所满足的`关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?

(1)用总长为60m的篱笆围成矩形场地,求矩形的面积s(m2)与一边长x(m)之间的关系式;

(2)购买单价是元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;

(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;

(4)银行规定:五年期存款的年利率为%,则某人存入x元本金与所得的本息和y(元)之间的关系。

活动:

1.分别指出下列各式中的常量与变量。

(1)圆的面积公式s=πr2;

(2)正方形的l=4a;

(3)大米的单价为元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=

2.写出下列问题的关系式,并指出不、常量和变量。

(1)某种活期储蓄的月利率为%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式。

(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是s,求s与n之间的关系式。

思考:怎样列变量之间的关系式?

小结:变量与常量

作业:阅读教材5页,函数

人教版八年级数学上册教案【第二篇】

教学目标

1.等腰三角形的概念。

2.等腰三角形的性质。

3.等腰三角形的概念及性质的应用。

教学重点:

等腰三角形的概念及性质。 2.等腰三角形性质的应用。

教学难点:

等腰三角形三线合一的性质的理解及其应用。

教学过程

Ⅰ.提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:

①三角形是轴对称图形吗?

②什么样的三角形是轴对称图形?

有的三角形是轴对称图形,有的三角形不是。

问题:那什么样的三角形是轴对称图形?

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形。

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

思考:

1.等腰三角形是轴对称图形吗?请找出它的对称轴。

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

结论:等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

由此可以得到等腰三角形的'性质:

1.等腰三角形的两个底角相等(简写成“等边对等角”).

2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程).

如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

求:△ABC各角的度数。

分析:根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形内角和为180°,就可求出△ABC的三个内角。

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。

解:因为AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等边对等角).

设∠A=x,则∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

[师]下面我们通过练习来巩固这节课所学的知识。

Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结。

Ⅳ.课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。

Ⅴ.作业:课本P56习题第1、2、3、4题。

板书设计

★★

等腰三角形

一、设计方案作出一个等腰三角形

二、等腰三角形性质:1.等边对等角2.三线合一

人教版八年级数学上册教案【第三篇】

教学目标

知识与技能

会推导平方差公式,并且懂得运用平方差公式进行简单计算。

过程与方法

经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

情感、态度与价值观

通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

教学重难点

重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

难点:平方差公式的应用。

关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

教学过程

一、创设情境,故事引入

情境设置教师请一位学生讲一讲《狗熊掰棒子》的故事

学生活动1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

教师归纳听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?

学生回答多项式乘以多项式。

教师激发大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

问题牵引计算:

(1)(x+2)(x—2);(2)(1+3a)(1—3a);

(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

学生活动分四人小组,合作学习,获得以下结果:

(1)(x+2)(x—2)=x2—4;

(2)(1+3a)(1—3a)=1—9a2;

(3)(x+5y)(x—5y)=x2—25y2;

(4)(y+3z)(y—3z)=y2—9z2。

教师活动请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

学生活动讨论

教师引导刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?

学生回答可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。

教师活动表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。

二、范例学习,应用所学

教师讲述

平方差公式的'运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。

例1:运用平方差公式计算:

(1)(2x+3)(2x—3);

(2)(b+3a)(3a—b);

(3)(—m+n)(—m—n)。

《乘法公式》同步练习

二、填空题

5、幂的乘方,底数______,指数______,用字母表示这个性质是______。

6、若32×83=2n,则n=______。

《乘法公式》同步测试题

25、利用正方形的面积公式和梯形的面积公式即可求解;

根据所得的两个式子相等即可得到。

此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题。

26、由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;

等式左边减数的底数与序号相同,由此得出第n个式子;

人教版八年级数学上册教案【第四篇】

教学目标

1.掌握等边三角形的性质和判定方法。 2.培养分析问题、解决问题的能力。

教学重点:

等边三角形的性质和判定方法。

教学难点:

等边三角形性质的`应用

教学过程

I、创设情境,提出问题

回顾上节课讲过的等边三角形的有关知识

1.等边三角形是轴对称图形,它有三条对称轴。

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形。

4.有一个角是60°的等腰三角形是等边三角形。

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法。

II、例题与练习

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上。

③过边AB上D点作DE∥BC,交边AC于E点。

2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小。

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

3. P56页练习1、2

III、课堂小结:1.等腰三角形和性质;等腰三角形的条件

V布置作业:页习题第ll题。

2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形。这样的点有多少个?

相关推荐

热门文档

20 241444