八年级上册数学教案精彩5篇
【前言导读】此篇优秀教案“八年级上册数学教案精彩5篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
八年级上册数学教案【第一篇】
一、内容和内容解析
1、内容:
三角形中相关元素的概念、按边分类及三角形的三边关系
2、内容解析:
三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解
本节课的教学重点:三角形中的相关概念和三角形三边关系
本节课的教学难点:三角形的三边关系
二、目标和目标解析
1、教学目标:
(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素
(2)理解并且灵活应用三角形三边关系
2、教学目标解析:
(1)结合具体图形,识三角形的概念及其基本元素
(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类
(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题
三、教学问题诊断分析
在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神
四、教学过程设计
1、创设情境,提出问题:
问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义
师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解
设计意图三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解
2、抽象概括,形成概念:
动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义。
三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形
设计意图:让学生体会由抽象到具体的过程,培养学生的语言表述能力
补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法
师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡
设计意图:进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用
3、概念辨析,应用巩固:
如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来
1、以AB为一边的三角形有哪些?
2、以∠D为一个内角的三角形有哪些?
3、以E为一个顶点的三角形有哪些?
4、说出ΔBCD的三个角、
师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解
八年级上册数学教案【第二篇】
教学目标
知识目标:
解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。
能力目标:
(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;
(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。
情感目标:
充分调动学生学习的积极性、主动性
教学重点
单项式与多项式的乘法运算
教学难点
推测整式乘法的运算法则。
教学过程
一、复习引入
通过对已学知识的复习引入课题(学生作答)
1、请说出单项式与单项式相乘的法则:
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。
(系数×系数)×(同字母幂相乘)×单独的幂
例如:( 2a2b3c) (-3ab)
解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c
= -6a3b4c
2、说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1
问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?
这便是我们今天要研究的问题。
二、新知探究
已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)
现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc
上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)
结论单项式与多项式相乘的运算法则:
用单项式分别去乘多项式的每一项,再把所得的积相加。
用字母表示为:m(a+b+c)=ma+mb+mc
运算思路:单×多
转化
分配律
单×单
三、例题讲解
例计算:(1)(-2a2)· (3ab2– 5ab3)
(2)(- 4x) ·(2x2+3x-1)
解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②
(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①
八年级上册数学教案【第三篇】
学习目标
1、通过运算多项式乘法,来推导平方差公式,学生的认识由一般法则到特殊法则的能力。
2、通过亲自动手、观察并发现平方差公式的结构特征,并能从广义上理解公式中字母的含义。
3、初步学会运用平方差公式进行计算。
学习重难点重点:
平方差公式的推导及应用。
难点是对公式中a,b的广泛含义的理解及正确运用。
自学过程设计教学过程设计
看一看
认真阅读教材,记住以下知识:
文字叙述平方差公式:_________________
用字母表示:________________
做一做:
1、完成下列练习:
①(m+n)(p+q)
②(a+b)(x-y)
③(2x+3y)(a-b)
④(a+2)(a-2)
⑤(3-x)(3+x)
⑥(2m+n)(2m-n)
想一想
你还有哪些地方不是很懂?请写出来。
_______________________________
_______________________________
________________________________、
1、下列计算对不对?若不对,请在横线上写出正确结果、
(1)(x-3)(x+3)=x2-3( ),__________;
(2)(2x-3)(2x+3)=2x2-9( ),_________;
(3)(-x-3)(x-3)=x2-9( ),_________;
(4)(2xy-1)(2xy+1)=2xy2-1( ),________、
2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;
(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、
3、计算:50×49=_________、
应用探究
1、几何解释平方差公式
展示:边长a的大正方形中有一个边长为b的小正方形。
(1)请计算图的阴影部分的面积(让学生用正方形的面积公式计算)。
(2)小明将阴影部分拼成一个长方形,这个长方形长与宽是多少?你能表示出它的面积吗?
2、用平方差公式计算
(1)103×93 (2)59、8×60、2
拓展提高
1、阅读题:
我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1),即1,原算式的值不变,而且还使整个算式能用乘法公式计算、解答过程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值吗?请试试看!
2、仔细观察,探索规律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)试求25+24+23+22+2+1的值;
(2)写出22006+22005+22004+…+2+1的个位数、
堂堂清
一、选择题
1、下列各式中,能用平方差公式计算的是( )
(1)(a-2b)(-a+2b);
(2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b);
(4)(a-2b)(2a+b)、
数学八年级上册优秀教案【第四篇】
教学目标
1、理解并掌握除数是整数的小数除法的计算方法,能正确计算除数是整数的小数除法。
2、培养学生的分析能力和类推能力。
3、体验所学知识与现实生活的联系,能应用所学知识解决生活中简单的问题,从中获得价值体验。
教学重难点
教学重点:理解并掌握除数是整数的小数除法的计算方法。
教学难点:理解商的小数点定位问题。
教学工具
ppt课件
教学过程
一、复习引入
1、填空:(PPT课件)
2、(PPT课件出示)
(1)引导学生列式:224÷4
(2)为什么这样列式?(路程÷时间=速度)
(3)说一说:224÷4这道题是怎样计算的?(教师板演)
设计意图通过复习整数除法,唤醒学生对整数除法计算方法和计算步骤的回忆,为新知的教学打好基础。
二、探究新知
(一)教学例1
1、出示例1,引导理解题意。(PPT课件演示。)
(1)题目中告诉了我们什么?(坚持晨练可以锻炼身体,王鹏坚持晨练,他计划4周跑步 km。)
(2)题目中要我们求什么?(按计划他平均每周应跑多少千米?)
2、尝试列式,分析数量关系。
(1)要求“他平均每周应跑多少千米”,应该怎样列式?(学生口头列式,教师板书或PPT课件演示:÷4。)
(2)引导思考:为什么用“÷4”?(路程÷时间=速度)
3、揭示新课,感受学习价值。
(1)请同学们观察这道除法算式,和我们前面复习的除法计算有什么不同?(除数还是整数,但被除数是小数。)
(2)揭示课题:看来,在实际生活中常常遇到需要用小数除法计算的问题,这节课我们就来研究新的课题──除数是整数的小数除法。
(3)板书课题:除数是整数的小数除法。
4、提出问题,自主思考算法。
(1)提出问题:我们已经会计算整数除法,那想一想,被除数是小数的除法该怎样计算呢?
(2)学生先独立思考,再在小组里交流自己的想法。(教师巡视,了解学生思维活动,参与小组交流,给予适当指导。)
5、教师引导,交流不同算法。
(1)我们已经会计算整数除法,在不改变商的大小的前提下,怎样把小数变成整数呢?谁来说一说你的想法?
(2)指名学生回答。(教师PPT课件演示。)
(3)我们小数除法还可以列竖式计算。下面我们就一起来探讨列竖式计算小数除法的方法。
(4)指导学生列出除法竖式。(教师板书)
6、交流两种算法和感受:
引导学生比较列竖式计算和将 km改写成22 400m计算的结果,提问:这两种算法的结果相同吗?(相同)哪种算法比较简便?(算法二计算过程比较麻烦,算法一比较简便。)
7、算一算,比一比。
(1)42÷3= ÷3=
(2)学生独立计算,教师巡视。
(3)教师PPT课件演示。
(4)这两道题有哪些相同点和不同点?学生讨论,交流。
(相同点:整数除以整数与小数除以整数计算方法相同;不同点:小数除以整数要把商的小数点与被除数的小数点对齐。)
设计意图例1的教学是本节课的重点、难点所在,通过例1的教学要使学生理解并掌握除数是整数的小数除法的计算方法,要理解商的小数点如何定位。在本环节的教学中,先让学生结合具体情境,在解决实际问题中引出计算问题,感受学习除数是整数的小数除法的必要性。在解决计算问题时,教师先放手学生自主探索计算方法,再引导学生用已有知识和经验解释竖式计算过程,结合数的含义理解商的小数点要和被除数的小数点对齐的道理,理解除数是整数的小数除法的一般计算方法,为学生下一环节的学习做好充分的铺垫。
(二)教学例2
1、出示例2。(PPT课件演示。)
2、引导学生理解题意,列出算式。(教师PPT课件演示:28÷16)
3、教师板演竖式计算过程,让学生明确算理和算法。(教师板书)
(1)除到被除数的末尾还有余数时,为什么可以添0继续除?
(2)“120”表示120个()分之一?除得的7为什么写在十分位上?
(3)“80”表示80个()分之一?除得的5为什么写在百分位上?
4、计算除数是整数的小数除法要注意什么?
(1)商的小数点要和被除数的小数点对齐;
(2)如果有余数,要添0再除。
(三)教学例3
1、出示例3。(PPT课件演示。)
2、引导学生理解题意,列出算式。(教师PPT课件演示:÷7)
3、引导学生观察被除数和除数有什么特点?(被除数比除数小);商会出现什么情况?怎样商?(不够商1,用0占位)
4、让学生把题补充完整。
5、引导学生自己尝试验算。
(1)引导:要检验小数除法的计算结果是否正确,可以怎么办?
(2)学生自主验算。
(3)教师板演。
设计意图例2和例3是除数是整数的小数除法中的两种特殊情况,例2是除到被除数的末尾仍有余数,需要添0继续除;例3是被除数比除数小,整数部分不够商1。在例2、例3的教学中,重点关注学生的数学思维发展,放手让学生探讨、交流,在解释每步计算的含义中找到解决问题的方法,在相互交流中强化对算理和算法的深入理解。通过引导学生自主验算,既帮助学生加深对乘除法之间关系的理解,又强化学生验算的意识和习惯。
三、智慧城堡
1、下面各题的商哪些是小于1的?在括号里画“√”
÷6 ÷45 45÷36 ÷28
( ) ( ) ( ) ( )
(1)引导学生判断。
(2)引导学生想一想,什么情况下得到的商比1小?
2、
(1)引导学生判断对错。
(2)这道题的7应该商在哪位上?
3、
(1)引导学生理解题意。
(2)引导学生根据“一共花的钱÷分钟数=每分钟花的钱”的数量关系列式。
(3)学生列竖式计算,然后展台展示学生做题情况。
四、我的收获是……
引导学生说出这节课的收获。
(1) 按整数除法的方法去除。
(2) 商的小数点要和被除数的小数点对齐。
(3) 整数不够除,商0,点上小数点。如果有余数,要添0再除。
八年级上册数学教案【第五篇】
教学目标
知识与技能
能确定多项式各项的公因式,会用提公因式法把多项式分解因式。
过程与方法
使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解。
情感、态度与价值观
培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值。
教学重难点
重点:掌握用提公因式法把多项式分解因式。
难点:正确地确定多项式的最大公因式。
关键:提公因式法关键是如何找公因式。方法是:一看系数、二看字母。公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。
教学过程
一、回顾交流,导入新知
复习交流
下列从左到右的变形是否是因式分解,为什么?
(1)2x2+4=2(x2+2);
(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;
(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
问题:
1、多项式mn+mb中各项含有相同因式吗?
2、多项式4x2-x和xy2-yz-y呢?
请将上述多项式分别写成两个因式的乘积的形式,并说明理由。
教师归纳我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y。
概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法。
二、小组合作,探究方法
教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?
师生共识提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。
三、范例学习,应用所学
例1:把-4x2yz-12xy2z+4xyz分解因式。
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
例2:分解因式:3a2(x-y)3-4b2(y-x)2
分析观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法。
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2·3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2·3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
例3:用简便的方法计算:
×12+12××12.
教师活动引导学生观察并分析怎样计算更为简便。
解:×12+12××12
=12×(+)
=12×1=12.
教师活动在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?
四、随堂练习,巩固深化
课本115页练习第1、2、3题。
探研时空
利用提公因式法计算:
×+×+×+×
五、课堂总结,发展潜能
1、利用提公因式法因式分解,关键是找准最大公因式。在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂。
2、因式分解应注意分解彻底,也就是说,分解到不能再分解为止。
六、布置作业,专题突破
课本119页习题第1、4(1)、6题。