首页 > 学习资料 > 初中教案 >

八年级上册数学教案(汇总5篇)

网友发表时间 2815476

【阅读指引】阿拉题库网友为您分享整理的“八年级上册数学教案(汇总5篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

八年级上册数学的教案【第一篇】

三角形的证明

1、等腰三角形

①定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)

②全等三角形的对应边相等、对应角相等

③定理:等腰三角形的两底角相等,即位等边对等角

④推论:等腰三角形顶角的平分线、底边上的中线以及底边上的高线互相重合

⑤定理:等边三角形的三个内角都想等,并且每个角都等于60°

⑥定理:有两个角相等的是三角形是等腰三角形(等角对等边)

⑦定理:三个角都相等的三角形是等边三角形

⑧定理;有一个角等于60°的等腰三角形是等边三角形

⑨定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

⑩反证法:在证明时,先假设命题的结论不成立,然后推导出与定义,基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

2、直角三角形

①定理:直角三角形的两个锐角互余

②定理有两个角互余的三角形是直角三角形

③勾股定理:直角三角形两条直角边的平方和等于斜边的平方

④如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形

⑤在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题

⑥一个命题是真命题,它的逆命题不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理

⑦定理:斜边和一条直角边分别相等的两个直角三角形全等

3、线段的垂直平分线

①定理:线段垂直平分线上的点到这条线段两个端点的距离相等

②定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上

4、角平分线

①定理:角平分线上的点到这个角的两边的距离相等

②定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上

数学八年级上教案【第二篇】

教学目的

1.使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。

2.熟识等边三角形的性质及判定。

2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。

教学重点:等腰三角形的性质及其应用。

教学难点:简洁的逻辑推理。

教学过程

一、复习巩固

1.叙述等腰三角形的性质,它是怎么得到的?

等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。

等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD=CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。

2.若等腰三角形的两边长为3和4,则其周长为多少?

二、新课

在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。

等边三角形具有什么性质呢?

1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。

2.你能否用已知的知识,通过推理得到你的猜想是正确的?

等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。

3.上面的条件和结论如何叙述?

等边三角形的各角都相等,并且每一个角都等于60°。

等边三角形是轴对称图形吗?如果是,有几条对称轴?

等边三角形也称为正三角形。

例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。

分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?

问题2:求∠1是否还有其它方法?

三、练习巩固

1.判断下列命题,对的打“√”,错的打“×”。

a.等腰三角形的角平分线,中线和高互相重合( )

b.有一个角是60°的等腰三角形,其它两个内角也为60°( )

2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。

练习1、2。

四、小结

由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。

五、作业:

1.课本P57第7,9题。

2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数

八年级数学上册教案【第三篇】

教材分析

平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。

学情分析

学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。

教学目标

1、知识与技能:经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行运算.

2、过程与方法:在探索平方差公式的过程中,发展学生的符号感和归纳能力、推理能力.在计算的过程中发现规律,掌握平方差公式的结构特征,并能用符号表达,从而体会数学语言的简洁美.

3、情感、态度与价值观:激发学习数学的兴趣.鼓励学生自己探索,有意识地培养学生的合作意识与创新能力.

教学重点和难点

重点:平方差公式的推导和应用.

难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题.

八年级数学上册全册教案【第四篇】

第11章 三角形

教材内容

本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。

三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用。

教学目标

〔知识与技能〕 12999. com

1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线;2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;3、会证明三角形内角和等于1800,了解三角形外角的性质。4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。

〔过程与方法〕

1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。

〔情感、态度与价值观〕

1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

重点难点

三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。

课时分配

与三角形有关的线段 ……………………………………… 2课时

与三角形有关的角 ………………………………………… 2课时

多边形及其内角和 ………………………………………… 2课时

本章小结 ………………………………………………………… 2课时

三角形的边

[教学目标]

〔知识与技能〕

1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形 ;

2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。

[教学过程]

一、情景导入

三角形是一种最常见的几何图形, [投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

那么什么叫做三角形呢?

二、三角形及有关概念

不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC用符号表示为△ABC。三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示。

三、三角形三边的不等关系

探究:[投影7]任意画一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?

有两条路线:(1)从B→C,(2)从B→A→C;不一样, AB+AC>BC①;因为两点之间线段最短。

同样地有 AC+BC>AB ②

AB+BC>AC ③

由式子①②③我们可以知道什么?

三角形的任意两边之和大于第三边。

四、三角形的分类

我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。

按角分类:

三角形 直角三角形

斜三角形 锐角三角形

钝角三角形

那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。

三边都相等的三角形叫做等边三角形;

有两条边相等的三角形叫做等腰三角形;

三边都不相等的三角形叫做不等边三角形。

显然,等边三角形是特殊的等腰三角形。

按边分类:

三角形 不等边三角形

等腰三角形 底和腰不等的等腰三角形

等边三角形

五、例题

例 用一条长为18㎝的细绳围成一个等腰三角形。(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?

分析:(1)等腰三角形三边的长是多少?若设底边长为x㎝,则腰长是多少?(2)“边长为4㎝”是什么意思?

解:(1)设底边长为x㎝,则腰长2 x㎝。

x+2x+2x=18

解得x=

所以,三边长分别为㎝,㎝,㎝.

(2)如果长为4㎝的边为底边,设腰长为x㎝,则

4+2x=18

解得x=7

如果长为4㎝的边为腰,设底边长为x㎝,则

2×4+x=18

解得x=10

因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。

由以上讨论可知,可以围成底边长是4㎝的等腰三角形。

五、课堂练习

课本4頁练习1、2题。

六、课堂小结

1、三角形及有关概念;

2、三角形的分类;

3、三角形三边的不等关系及应用。

作业:

课本8頁1、2、6;

教后记

三角形的高、中线与角平分线

〔教学目标〕

〔知识与技能〕

1、经历画图的过程,认识三角形的高、中线与角平分线;

2、会画三角形的高、中线与角平分线;3、了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于一点。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

〔重点难点〕三角形的高、中线与角平分线是重点;三角形的角平分线与角的平分线的区别,画钝角三角形的高是难点。

〔教学过程〕

一、导入新课

我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得我们研究。

二、三角形的高

请你在图中画出△ABC的一条高并说说你画法。

从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高,表示为AD⊥BC于点D。

注意:高与垂线不同,高是线段,垂线是直线。

请你再画出这个三角形AB 、AC边上的高,看看有什么发现?

三角形的三条高相交于一点。

如果△ABC是直角三角形、钝角三角形,上面的结论还成立吗?

现在我们来画钝角三角形三边上的高,如图。

显然,上面的结论成立。

请你画一个直角三角形,再画出它三边上的高。

上面的结论还成立。

三、三角形的中线

如图,我们把连结△ABC的顶点A和它的对边BC的中点D,所得线段AD叫做△ABC的边BC上的中线,表示为BD=DC或BD=DC=1/2BC或2BD=2DC=BC.

请你在图中画出△ABC的另两条边上的中线,看看有什么发现?

三角的三条中线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。

上面的结论还成立。

四、三角形的角平分线

如图,画∠A的平分线AD,交∠A所对的边BC于点D,所得线段AD叫做△ABC的角平分线,表示为∠BAD=∠CAD或∠BAD=∠CAD=1/2∠BAC或2∠BAD=2∠CAD=∠BAC。

思考:三角形的角平分线与角的平分线是一样的吗?

三角形的角平分线是线段,而角的平分线是射线,是不一样的。

请你在图中再画出另两个角的平分线,看看有什么发现?

三角形三个角的平分线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。

上面的结论还成立。

想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同?

三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。

五、课堂练习

课本5頁练习1、2题。

六、课堂小结

1、三角形的高、中线、角平分线的概念和画法。

2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。

七作业:

课本8頁3、4;

八、教后记

三角形的稳定性

[教学目标]

〔知识与技能〕

1、 知道三角形具有稳定性,四边形没有稳定性;2、了解三角形的稳定性在生产、生活中的应用。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]三角形稳定性及应用。

[教学过程]

一、情景导入

盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?

二、三角形的稳定性

〔实验〕1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?

不会改变。

2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?

会改变。

3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?

不会改变。

从上面的实验中,你能得出什么结论?

三角形具有稳定性,而四边形不具有稳定性。

三、三角形稳定性和四边形不稳定的应用

三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。如:

钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。

你还能举出一些例子吗?

四、课堂练习

1、下列图形中具有稳定性的是( )

A正方形 B长方形 C直角三角形 D平行四边形

2、要使下列木架稳定各至少需要多少根木棍?

3、课本7頁练习。

五作业:8頁5;9頁10题。

六、教后记

三角形的内角

[教学目标]

〔知识与技能〕

掌握三角形内角和定理。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]三角形内角和定理是重点;三角形内角和定理的证明是难点。

[教学过程]

一、导入新课

我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢?

二、三角形内角和的证明

回顾我们小学做过的实验,你是怎样操作的?

把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出

∠BCD的度数,可得到∠A+∠B+∠ACB=1800。[投影1]

图1

想一想,还可以怎样拼?

①剪下∠A,按图(2)拼在一起,可得到∠A+∠B+∠ACB=1800。

图2

②把和剪下按图(3)拼在一起,可得到∠A+∠B+∠ACB=1800。

如果把上面移动的角在图上进行转移,由图1你能想到证明三角形内角和等于1800的方法吗?

已知△ABC,求证:∠A+∠B+∠C=1800。

证明一

过点C作CM∥AB,则∠A=∠ACM,∠B=∠DCM,

又∠ACB+∠ACM+∠DCM=1800

∴∠A+∠B+∠ACB=1800。

即:三角形的内角和等于1800。

由图2、图3你又能想到什么证明方法?请说说证明过程。

三、例题

例 如图,C岛在A岛的北偏东500方向,B岛在A岛的北偏东800方向,C岛在B岛的北偏西400方向,从C岛看A、B两岛的视角∠ACB是多少度?

分析:怎样能求出∠ACB的度数?

根据三角形内角和定理,只需求出∠CAB和∠CBA的度数即可。

∠CAB等于多少度?怎样求∠CBA的度数?

解:∠CBA=∠BAD-∠CAD=800-500=300

∵AD∥BE ∴∠BAD+∠ABE=1800

∴∠ABE=1800-∠BAD=1800-800=1000

∴∠ABC=∠ABE-∠EBC=1000-400=600

∴∠ACB=1800-∠ABC-∠CAB=1800-600-300=900

答:从C岛看AB两岛的视角∠ACB=1800是900。

四、课堂练习

课本13頁1、2题。

五作业:

16頁1、3、4;

六、教后记

三角形的外角

[教学目标]

〔知识与技能〕

理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]三角形的外角和三角形外角的性质是重点;理解三角形的外角是难点。

[教学过程]

一、导入新课

〔投影1〕如图,△ABC的三个内角是什么?它们有什么关系?

是∠A、∠B、∠C,它们的和是1800。

若延长BC至D,则∠ACD是什么角?这个角与△ABC的三个内角有什么关系?

二、三角形外角的概念

∠ACD叫做△ABC的外角。也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角。

想一想,三角形的外角共有几个?

共有六个。

注意:每个顶点处有两个外角,它们是对顶角。研究与三角形外角有关的问题时,通常每个顶点处取一个外角。

三、三角形外角的性质

容易知道,三角形的外角∠ACD与相邻的内角∠ACB是邻补角,那与另外两个角有怎样的数量关系呢?

〔投影2〕如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明∠ACD与∠A、 ∠B的关系吗?

∵CE∥AB, ∴∠A=∠1,∠B=∠2

又∠ACD=∠1+∠2

∴∠ACD=∠A+∠B

你能用文字语言叙述这个结论吗?

三角形的一个外角等于与它不相邻的两个内角之和。

由加数与和的关系你还能知道什么?

三角形的一个外角大于与它不相邻的任何一个内角。

即 ,。

四、例题

〔投影3〕例 如图,∠1、∠2、∠3是三角形ABC的三个外角,它们的和是多少?

分析:∠1与∠BAC、∠2与∠ABC、∠3与∠ACB有什么关系?∠BAC、ABC、∠ACB有什么关系?

解:∵∠1+∠BAC=1800,∠2+∠ABC=1800,∠3+∠ACB=1800,

∴∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=5400

又∠BAC+∠ABC+∠ACB=1800

∴∠1+∠2+∠3==3600。

你能用语言叙述本例的结论吗?

三角形外角的和等于3600。

五、课堂练习

课本15頁练习;

六、课堂小结

1、什么是三角形外角?

2、三角形的外角有哪些性质?

七、作业:

课本12頁5、6;

八、教后记

多边形

[教学目标]

〔知识与技能〕

1、 了解多边形及有关概念,理解正多边形的概念。2、区别凸多边形与凹多边形。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]多边形及有关概念、正多边形的概念是重点;区别凸多边形与凹多边形是难点。

[教学过程]

一、情景导入

[投影1]看下面的图片,你能从中找出由一些线段围成的图形吗?

二、多边形及有关概念

这些图形有什么特点?

由几条线段组成;它们不在同一条直线上;首尾顺次相接。

这种在平面内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。

多边形按组成它的线段的条数分成三角形、四边形、五边形……、n边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。

与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的∠A、∠B、∠C、∠D、∠E。多边形的边与它的邻边的延长线组成的角叫做多边形的外角。如图中的∠1是五边形ABCDE的一个外角。[投影2]

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线。

四边形有几条对角线?五边形有几条对角线?画图看看。

你能猜想n边形有多少条对角线吗?说说你的想法。

n边形有1/2n(n-3)条对角线。因为从n边形的一个顶点可以引n-3条对角线,n个顶点共引n(n-3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,所以,n边形有1/2n(n-3)条对角线。

三、凸多边形和凹多边形

[投影3]如图,下面的两个多边形有什么不同?

在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形。

注意:今后我们讨论的多边形指的都是凸多边形。

四、正多边形的概念

五、课堂练习

课本21頁练习1、2。

3、有五个人在告别的时候相互各握了一次手,他们共握了多少次手?你能找到一个几何模型来说明吗?

六、课堂小结

1、多边形及有关概念。

2、区别凸多边形和凹多边形。

3、正多边形的概念。

4、n边形对角线有1/2n(n-3)条。

七、作业:

课本24頁1。

八、教后记

多边形的内角和

[教学目标]

〔知识与技能〕

1、 了解多边形的内角、外角等概念;

2、 2、能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]多边形的内角和与多边形的外角和公式是重点;多边形的内角和定理的推导是难点。

[教学过程]

一、复习导入

我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗?

二、多边形的内角和

〔投影1〕如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?

可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=△ABD的内角和+△BDC的内角和=2×180°=360°。

类似地,你能知道五边形、六边形…… n边形的内角和是多少度吗?

〔投影2〕观察下面的图形,填空:

五边形 六边形

从五边形一个顶点出发可以引 对角线,它们将五边形分成 三角形,五边形的内角和等于 ;

从六边形一个顶点出发可以引 对角线,它们将六边形分成 三角形,六边形的内角和等于 ;

〔投影3〕从n边形一个顶点出发,可以引 对角线,它们将n边形分成 三角形,n边形的内角和等于 。

n边形的内角和等于(n一2)·180°.

从上面的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗?

分法一 〔投影3〕如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形。

∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°。

图1 图2

分法二 〔投影4〕如图2,在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形。

∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°

如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n一2)×180°.

三、例题

〔投影6〕例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?

如图,已知四边形ABCD中,∠A+∠C=180°,求∠B与∠D的关系。

分析:∠A、∠B、∠C、∠D有什么关系?

解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360°

又∠A+∠C=180°

∴∠B+∠D= 360°-(∠A+∠C)=180°

这就是说,如果四边形一组对角互补,那么另一组对角也互补。

〔投影7〕例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和。六边形的外角和等于多少?

如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值。

分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?

解:∵∠1+∠BAF=180° ∠2+∠ABC=180°∠3+∠BAD=180°

∠4+∠CDE=180°∠5+∠DEF=180° ∠6+∠EFA=180°

∴∠1+∠BAF+∠2+∠ABC+∠3+∠BAD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA=6×180°

又∠1+∠2+∠3+∠4+∠5+∠6=4×180°

∴∠BAF+∠ABC+∠BAD+∠CDE+∠DEF+∠EFA=6×180°-4×180°=360°

这就是说,六边形形的外角和为360°。

如果把六边形换成n边形可以得到同样的结果:

n边形的外角和等于360°。

对此,我们也可以这样来理解。〔投影8〕如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.

四、课堂练习

课本24頁1、2、3题。

五、课堂小结

n边形的内角和是多少度?

n边形的外角和是多少度?

六、作业:

课本24頁2、3;

七、教后记

本章小结

一、知识结构

二、回顾与思考

1、什么是三角形?什么是多边形?什么是正多边形?

三角形是不是多边形?

2、什么是三角形的高、中线、角平分线?什么是对角线?

三角形有对角线吗?n边形的的对角线有多少条?

3、三角形的三条高,三条中线,三条角平分线各有什么特点?

4、三角形的内角和是多少?n边形的内角和是多少?

你能用三角形的内角和说明n边形的内角和吗?

5、三角形的外角和是多少?n边形的外角和是多少?

你能说明为什么多边形的外角和与边数无关吗?

6、怎样才算是平面镶嵌?平面镶嵌的条件是什么?能单独进行平面镶嵌的多边形有哪些?

你能举一个几个多边形进行平面镶嵌的例子吗?

三、例题导引

例1 如图,在△ABC中,∠A︰∠B︰∠C=3︰4︰5,BD、CE分别是边AC、AB上的高,BD、CE相交于点H,求∠BHC的度数。 例2 如图,把△ABC沿DE折叠,当点A落在四边形BCDE内部时,

探索∠A与∠1+∠2有什么数量关系?并说明理由。

例3 如图所示,在△ABC中,△ABC的内角平分线与外角平分线交于点P,试说明∠P=1/2∠A.

四、巩固练习

课本28—29頁复习题7(第3题可不做).

五、教后记

第十二章 全等三角形

单元要点分析

教学内容

本章的主要内容是全等三角形。主要学习全等三角形的性质以及探索判定三角形全等的方法,并学会怎样应用全等三角形进行证明,本章划分为三个小节,第一节学习三角形全等的概念、性质;第二节学习三角形全等的判定方法和直角三角形全等的特殊判定方法;第三节利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。

教材分析

教材力求创设现实、有趣的问题情境,使学生经历从现实活动中抽象出几何模型和运用所学内容解决实际问题的过程。在内容呈现上,把研究三角形全等条件的重点放在第一个条件上,通过“边边边”条件探索什么是三角形的判定,如何判定,怎样进行推理论证,怎样正确地表达证明过程。学生开始学习三角形判定定理时的困难在于定理的证明,而这些推理证明并不要求学生掌握。为了突出判定方法这条主渠道,教材都作为基本事实提出来,在画图、实验中让学生知道它们的正确性就可以了。在“角的平分线的性质”一节中的两个互逆定理,只要求学生了解其条件与结论之间的关系,不必介绍互逆命题、互逆定理等内容,这将在“勾股定理”中介绍。

三维目标

1.知识与技能

在探索全等三角形的性质与判定中,提高认知水平,积累数学活动经验。

2.过程与方法

经历探索三角形全等的判定的,发展空间观念和有条理的表达能力,掌握两个三角形全等的判定并应用于实际之中。

3.情感、态度与价值观

培养良好的观察、操作、想象、推理能力,感悟几何学的内涵。

重、难点与关键

1.重点:使学生理解证明的基本过程,掌握用综合法证明的格式。

2.难点:领会证明的分析思路,学会运用综合法证明的格式。

3.关键:突出三角形全等的判定方法这条主线,淡化对定理的证明。

教学建议

1.注意使学生经历探索三角形性质及三角形全等的判定的过程。在教学中鼓励学生观察、操作、推理,运用多种方式探索三角形有关性质。

2.注重创设具有现实性、趣味性和挑战性的情境,体现三角形的广泛应用。

八年级上册数学的教案【第五篇】

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)?(a+b)。

这种利用分组来分解因式的方法叫做分组分解法。从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。

相关推荐

热门文档

17 2815476