《同底数幂的乘法》教案【优质4篇】
【路引】由阿拉题库网美丽的网友为您整理分享的“《同底数幂的乘法》教案【优质4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
《同底数幂的乘法》教案【第一篇】
一、素质教育目标
1、理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质。
2、能够熟练运用性质进行计算。
3、通过推导运算性质训练学生的抽象思维能力。
4、通过用文字概括运算性质,提高学生数学语言的表达能力。
5、通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度。
二、学法引导
1、教学方法:尝试指导法、探究法。
2、学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解。
三、重点难点及解决办法
(一)重点
幂的运算性质。
(二)难点
有关字母的广泛含义及性质的正确使用。
(三)解决办法
注意对前提条件的判别,合理应用性质解题。
四、课时安排
一课时。
五、教具学具准备
投影仪、自制胶片。
六、师生互动活动设计
1、复习幂的意义,并由此引入同底数幂的乘法。
2、通过一组同底数幂的乘法的练习,努力探究其规律,在探究过程中理解公式的意义。
3、教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握。
七、教学步骤
(-)明确目标
本节课主要学习同底数幂的乘法的性质。
(二)整体感知
让学生在复习幂的意义的基础之上探究同底数幂的乘法的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加。
(三)教学过程
1.创设情境,复习导入
表示的意义是什么?其中 、 、 分别叫做什么?
师生活动:学生回答( 叫底数, 叫指数, 叫做幂),同时,教师板书。
个
。
。
提问: 表示什么? 可以写成什么形式?______________
答案: ;
教法说明此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备。
2.尝试解题,探索规律
(1)式子 的意义是什么?(2)这个积中的两个因式有何特点?
学生回答:(1) 与 的积(2)底数相同
引出本课内容:这节课我们就在复习乘方的意义的基础上,学习像 这样的同底数幂的乘法运算。
请同学们先根据自己的理解,解答下面3个小题。
;
; 。
学生活动:学生自己思考完成,然后一个(或几个)学生回答结果。
教法说明
(1)让学生在已有知识的基础上感知规律的存在性、一般性,从而建立对同底数幂乘法法则的感性认识。
(2)培养学生运用已有知识探索新知识的热情。
(3)体现学生的主体作用。
3.导向深入,揭示规律
计算 的过程就是
也就是
那么 ,当 都是正整数时,如何计算呢?
( 都是正整数)
(板书)
学生活动:同桌研究讨论,并试着推导得出结论。
师生共同总结: ( 都是正整数)
教师把结论写在黑板上。
请同学们试着用文字概括这个性质:
同底数幂相乘 底数不变、指数相加
运算形式 运算方法
提出问题:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?
学生活动:观察 ( 都是正整数)
教法说明注意对学生从特殊到一般的认识方法的培养,揭示新规律时,强调学生的积极参与。
4.尝试反馈,理解新知
学生活动:学生在练习本上完成例1、例2,由2个学生板演完成之生,由学生判断板演是否正确。
教师活动:统计做题正确的人数,同时给予肯定或鼓励。
注意问题:例2(2)中第一个 的指数是1,这是学生做题时易出问题之处。
教法说明学生在认识的基础上,尝试运用性质,加深对性质的理解。学生做题正确与否,教师均应以鼓励为主,增强学生学习的信心。
5.反馈练习,巩固知识
教法说明此组题旨在增强学生应变能力和解题灵活性。
(四)总结、扩展
学生活动:1.同底数幂相乘,底数_____________,指数____________.
2、由学生说出本节体会最深的是哪些?
教学说明在1中强调不变、相加。学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力。
同底数幂的乘法【第二篇】
(一)
一、素质教育目标
1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质。
2.能够熟练运用性质进行计算。
3.通过推导运算性质训练学生的抽象思维能力。
4.通过用文字概括运算性质,提高学生数学语言的表达能力。
5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度。
二、学法引导
1.教学方法:尝试指导法、探究法。
2.学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解。
三、重点·难点及解决办法
(-)重点
幂的运算性质。
(二)难点
有关字母的广泛含义及“性质”的正确使用。
(三)解决办法
注意对前提条件的判别,合理应用性质解题。
四、课时安排
一课时。
五、教具学具准备
投影仪、自制胶片。
六、师生互动活动设计
1.复习幂的意义,并由此引入。
2.通过一组的练习,努力探究其规律,在探究过程中理解公式的意义。
3.教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握。
七、教学步骤
(-)明确目标
本节课主要学习的性质。
(二)整体感知
让学生在复习幂的意义的基础之上探究的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加。
(三)教学过程
1.创设情境,复习导入
表示的意义是什么?其中 、 、 分别叫做什么?
师生活动:学生回答( 叫底数, 叫指数, 叫做幂),同时,教师板书。
个
.
.
提问: 表示什么? 可以写成什么形式?______________
答案: ;
教法说明此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备。
2.尝试解题,探索规律
(1)式子 的意义是什么?(2)这个积中的两个因式有何特点?
学生回答:(1) 与 的积(2)底数相同
引出本课内容:这节课我们就在复习“乘方的意义”的基础上,学习像 这样的运算。
请同学们先根据自己的理解,解答下面3个小题。
;
; .
学生活动:学生自己思考完成,然后一个(或几个)学生回答结果。
教法说明
(1)让学生在已有知识的基础上感知规律的存在性、一般性,从而建立对同底数幂乘法法则的感性认识。
(2)培养学生运用已有知识探索新知识的热情。
(3)体现学生的主体作用。
3.导向深入,揭示规律
计算 的过程就是
也就是
那么 ,当 都是正整数时,如何计算呢?
( 都是正整数)
(板书)
学生活动:同桌研究讨论,并试着推导得出结论。
师生共同总结: ( 都是正整数)
教师把结论写在黑板上。
请同学们试着用文字概括这个性质:
同底数幂相乘 底数不变、指数相加
运算形式 运算方法
提出问题:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?
学生活动:观察 ( 都是正整数)
教法说明注意对学生从特殊到一般的认识方法的培养,揭示新规律时,强调学生的积极参与。
4.尝试反馈,理解新知
例1 计算:
(1) (2)
例2 计算:
(1) (2)
学生活动:学生在练习本上完成例1、例2,由2个学生板演完成之生,由学生判断板演是否正确。
教师活动:统计做题正确的人数,同时给予肯定或鼓励。
注意问题:例2(2)中第一个 的指数是1,这是学生做题时易出问题之处。
教法说明学生在认识的基础上,尝试运用性质,加深对性质的理解。学生做题正确与否,教师均应以鼓励为主,增强学生学习的信心。
5.反馈练习,巩固知识
练习一
(1)计算:(口答)
① ② ③
④ ⑤ ⑥
(2)计算:
① ② ③
④ ⑤ ⑥
学生活动:第(1)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查。
练习二
下面的计算对不对?如果不对,应怎样改正?
(1) (2) (3)
(4) (5) (6)
学生活动:此练习以学生抢答方式完成。注意训练学生的表述能力,以提高兴趣。
教法说明练习一主要是对性质运用的强化,形成定势。练习二中主要是通过学生对题目的观察、比较、判断,提高学生的是非辨别力。(1)(2)小题强调同底数幂乘法与整式加减的区别。(3)(4)小题强调性质中的“不变”、“相加”。(5)小题强调“ ”表示“ ”的一次幂。
6.变式训练,培养能力
练习三
填空:
(1) (2)
(3) (4)
学生活动:学生思考后回答。
教法说明这组题的目的是训练学生的逆向思维能力。
练习四
填空:
(1) ,则 .
(2) ,则 .
(3) ,则 .
学生活动:学生同桌或前后左右结组研究、讨论,然后在练习本上完成。
教法说明此组题旨在增强学生应变能力和解题灵活性。
(四)总结、扩展
学生活动:1.同底数幂相乘,底数_____________,指数____________.
2.由学生说出本节体会最深的是哪些?
教学说明在1中强调“不变”、“相加”。学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力。
八、布置作业
P94 1,2.
参考答案
略。
同底数幂的乘法【第三篇】
同底数幂的乘法(一)
教学目标
1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;
2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力。
教学重点和难点
幂的运算性质。
课堂教学过程 设计
一、运用实例导入 新课
引例 一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?
学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?
要解方程(x+3)(x+5)=x(x+ 2)+39必须将(x+3)(x+ 5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要要用到整式的乘法。(写出课题:第七章 整式的乘除)
本章共有三个单元,整式的乘法、乘法公式、整式的除法。这与前面学过的整式的加减法一起,称为整式的四则运算。学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备。
为了学习整式的乘法,首先必须学习幂的运算性质。(板书课题: 同底数幂的乘法)在此我们先复习乘方、幂的意义。
二、复习提问
1.乘方的意义:求n个相同因数a的积的运算叫乘方,即
2.指出下列各式的底数与指数:
(1)34; (2)a3; (3)(a+b)2; (4)(-2)3; (5)-23.
其中,(-2)3 与- 23 的含义是否相同?结果是否相等?(-2)4 与- 24 呢
三、讲授新课
1.利用乘方的意义,提问学生,引出法则
计算103×102.
解:103×102=(10×10×10)+(10×10)(幂的意义)
=10×10×10×10×10(乘法的结合律)
=105.
2.引导学生建立幂的运算法则
将上题中的底数改为a,则有
a3·a2=(aaa)·(aa)
=aaaaa=a5, 即a3·a2=a5=a3+2.
用字母m,n表示正整数,则有
=am+n, 即am·an=am+n.
3.引导学生剖析法则
(1)等号左边是什么运算? (2)等号两边的底数有什么关系?
(3)等号两边的指数有什么关系? (4)公式中的底数a可以表示什么?
(5)当三个以上同底数幂相乘时,上述法则是否成立?
要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加。
四、应用举例变式练习
例1 计算:
(1)107×104; (2)x2·x5.
解:(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7.
提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述。
课堂练习
计算:
(1)105·106; (2)a7·a3; (3)y3· y2;
(4)b5· b; (5)a6·a6; (6)x5·x5.
例2 计算:
(1)23×24×25;(2)y· y2· y5.
解:(1)23×24×25=23+4+5=212.(2) y· y2 · y5 =y1+2+5=y8.
对于第(2)小题,要指出y的指数是1,不能忽略。
五、小结
1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字。
2.解题时要注意a的指数是1.
六、作业
《同底数幂的乘法》教案【第四篇】
教学目标
在了解同底数幂乘法意义的基础上掌握法则,会进行同底数幂的乘法基本运算。
在推导法则的过程中,培养观察、概括与抽象的能力。
通过对具体事例的观察和分析,归纳、总结出同底数幂乘法的法则,培养学生归纳、总结,以及从特殊到一般的抽象概括等思维能力。
让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。
重点难点
重点
同底数幂相乘的法则的推理过程及运用
难点
同底数幂相乘的运算法则的推理过程
教学过程
一、温故知新
1、 表示什么意义?(是乘方运算,表示10个2相乘;也可以用来表示运算的结果)
2、下列四个式子① ,② ,③ ④ 中,运算结果是 的有哪些?你能说明理由吗?(学生通过讨论,明确两个幂只有当底数相同时才可以乘起来,同时初步感受计算的方法)
3、光的传播速度是每秒 米,若一年以 秒计算,那么光走一年的路程是多少米呢?
学生列出式子 。这个式子怎样运算呢?解决这个问题的关键是弄清楚两个同底数幂相乘的一般方法,下面我们就来探索同底数幂的乘法法则。
二、新课讲解
探究新知
你能计算出 吗?
学生解答,教师板书
那么 等于多少呢?更一般的, 等于多少呢?
学生回答,教师板书
你发现运算的方法了吗?
师生共同概括归纳出同底数幂乘法的法则:
同底数幂相乘,底数不变,指数相加。
用公式表示是: (、n都是正整数)
动脑筋
当3个或三个以上的同底数幂相乘时,怎样用公式表示运算的结果呢?
学生思考并讨论解答,最后教师总结: (,n,p都是正整数)
三、典例剖析
例1 计算:(1) ;(2)
分析:直接运用公式计算,教师板书计算过程,强调初学时要注意弄清楚计算的步骤。
例2 计算:(1) ;(2)
让学生独立完成。这题意在进一步训练运用法则进行计算,注意观察学生是否会用法则进行计算,点评时要强调对法则的运用。
例3 计算:(1) ;(2)
学生解答并讨论,教师注意拓展学生对法则的运用,培养符号演算的能力,指出公式中的底数可以是具体的数,也可以是字母或式子表示的数,提高学生的运算能力。
四、课堂练习
基础训练:
1、计算:
(1) ;(2) ;(3) ;(4)
2、计算:
(1) ;(2) ;(3) ;(4)
(学生解答各题,教师组织学生互相批改,对学生出错比较多的地方做讲解和变式训练)
提高训练
3、 计算 ;(2)
4、制作拉面需将长条形面团摔匀拉伸后对折,并不断重复若干次这组动作。 随着不断地对折, 面条根数不断增加。 若一碗面约有64 根面条,则面团需要对折多少次? 若一个拉面店一天能卖出2 048 碗拉面,用底数为2的幂表示拉面的总根数。
(用以提升学生运算的灵活性,提高学习兴趣。)
五、小结
师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。(如:对法则的理解,解决了什么问题,体会从特殊到一般探索规律的数学思想等等)
六、布置作业
教材P40 第1题,P41 第12题