首页 > 实用范文 > 寄语 >

幂的乘方教案【优推8篇】

网友发表时间 1803347

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“幂的乘方教案【优推8篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

幂的乘方教案【第一篇】

1、知识与技能:

了解科学记数法的意义,会用科学记数法表示绝对值比较大的数。

2、过程与方法:

在科学记数法中,其中a是整数位只有一位的数,n是原数的整数位数减1。

1、重点:用科学记数法表示绝对值较大的数。

2、难点:熟练用科学记数法表示绝对值较大的数。

太阳的半径大约是696000千米;光的速度大约是300000000米/秒。这些数读、写都有困难,可把696000记作×105,这就是科学记数法。

1、填空。

=,=,=。

×=,×=,×=。

从上面你能发现什么规律吗?

(1)10的指数比原数的整数位少1,一个数可以写成一个整数位数只有一位的数与10的n次幂相乘的形式。

1、做一做:课本p44例2。

解答见教材,注意10的指数比原数的整数位少1。

2、科学记数法:把一个绝对值大于10的数记成的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。

3、做一做:用科学记数法表示下列各数:

(1)108000;(2)-3200000。

两生上台练习,指出学生存在的错误,如对科学记数法中a的要求理解的错误。

4、p44练习第1、2、3题。

用科学记数法表示时要注意:(1)a是整数位只有一位的数,(2)10的指数n比原数的整数位数少1。

幂的乘方教案【第二篇】

教学任务分析。

教学流程安排。

课前准备。

教学过程设计。

案例点评:

以在国际象棋上放米粒的故事引课,学习之后又解决这个问题,使课程既丰富多彩,又妙趣横生,也产生了前后呼应的效果。

该案例中,教学过程的设计符合新课程标准和课程改革的要求,通过教学情景创设和优化课堂教学设计,真正体现了在活动中学习数学,在活动中“做数学”,利用教具使教学内容形象、直观并具有亲和力,极大地调动了学生的学习积极性和热情,培养了学生学习数学的'兴趣。教学过程始终坚持让学生自己去动脑、动手、动口,在分析、练习基础上掌握知识。整个教学过程都较好地落实了“学生的主体地位和教师的主导作用”,让学生体会到学习成功的乐趣。

幂的乘方教案【第三篇】

正数和负数(2)。

教学目标:

教学重点:

深化对正负数概念的理解。

教学难点:

正确理解和表示向指定方向变化的量。

教学准备:彩色粉笔。

教学过程:

一、复习引入:

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分界,是基准.

二、讲解新课。

度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。

思考:教科书第4页(学生先思考,教师再讲解)。

三、课堂练习课本p4练习1,2,3,4。

四、课时小结。

引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.

五、课外作业教科书p5:2、4。

板书设计:

文档为doc格式。

幂的乘方教案【第四篇】

知识与技能:使学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;正确进行有理数的乘方运算。

过程与方法:经历探索乘方有关规律的过程,领会重要的数学建模思想,归纳思想,形成数感,符号感,发展抽象思维。

鼓励猜想,倡导参与,学会倾听,建立自信心。

学习难点:幂,底数,指数的概念及其表示。处理好负数的乘方运算。用乘方解决有关实际学习重点问题。

探究归纳法。

1求n个()的运算叫做乘方,乘方的结果叫做()。

2在式子an(n为正整数)中,()叫底数,()叫指数,()叫幂。

3负数的奇次幂是(),负数的偶次幂是(),正数的任何次幂(),0的任何次幂()。

知识点1:有关乘方的概念。

1(--3)4表示的意义是(),,底数是(),指数是(),结果是()。

243的底数是()指数是(),表示的意义是(),结果等于()。

3计算=();(--?)=()。

4(--2)5读作();---25读作()。

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课。

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]。

动画演示:

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]。

动画演示:

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]。

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

1(--3)3=(),--52=()。

2立方等于8的数是(),平方等于16的数是()。

3一个数的平方等于这个数本身,此数为(),一个数的立方等于这个数本身,此数为(),一个数的平方等于这个数的立方,此数为()。

4(--3×5)2=();--(--2)4=()。

5(--1)2012=()。

6下列说法正确的是()。

a一个有理数的平方是非负数。b一个有理数的平方是正数。

c一个有理数的平方大于这个数。d一个有理数的平方大于这个数的相反数。

7把--(--?)(--?)(--?)(--?)写成乘方的形式是()。

8下列各对数中,值相等的是()。

9计算下列各题。

(1)(--?)3(2)--(--3)3(3)8×(--?)2。

(4)(--1)100×(--1)3(5)(--?)3×(--16)。

10阅读材料并解决问题。

你能比较两个数20112012和20122011的大小吗?

为了解决这个问题,先把问题一般化,即比较nn+1和(n+1)n(n为大于1的正数)的大小。然后从分析n=1,n=2,,n=3~~这些简单情况入手发现规律,猜想一般结论。

(1)计算比较。

(2)从上面各小题结果归纳,可以猜想什么结论?

(3)根据归纳猜想的结论比较20112012和20122011的大小。

幂的乘方教案【第五篇】

(1)正确理解乘方、幂、指数、底数等概念。

(3)培养探索精神,体验小组交流、合作学习的重要性。

教学方法。

讲授法、讨论法。

教学重点。

正确理解乘方的意义,掌握乘方运算法则。

教学难点。

正确理解乘方、底数、指数的概念,并合理运算。

课前准备。

教师准备教学用课件,学生预习。

教学过程。

新课讲授。

边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.

a·a简记作a2,读作a的平方(或二次方).

a·a·a简记作a3,读作a的立方(或三次方).

一般地,几个相同的因数a相乘,记作an.即a·a……a.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).

(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.

(-2)3与-23的意义不相同,其结果一样。

(-2)4的底数是-2,指数是4,读作-2的四次幂,表示。

(-2)×(-2)×(-2)×(-2),

结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为。

-(2×2×2×2),其结果为-16.

(-2)4与-24的意义不同,其结果也不同。

()2的底数是,指数是2,读作的二次幂,表示×,结果是;表示32与5的商,即,结果是.

因此,当底数是负数或分数时,一定要用括号把底数括起来。

一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写。

因为an就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算。

例1:计算:

(1)(-4)3;(2)(-2)4;(3)(-)5;。

(4)33;(5)24;(6)(-)2.

解:(1)(-4)3=(-4)×(-4)×(-4)=-64。

(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16。

(3)(-)5=(-)×(-)×(-)×(-)×(-)=-。

幂的乘方教案【第六篇】

2.通过观察、猜想、实践等数学活动,学生从中提高观察、类比、归纳和计算的能力。

3.初步了解并体会转化的数学思想,逐步养成观察并发现规律的意识,在相互启发中体验合作学习,树立团队意识。

二、教学重难点?

三、教学策略。

四、教学过程。

教学进程教学内容学生活动设计意图引入新知问题一:

把一张纸对折2次可裁成4张,即2×2张;对折3次可裁成8张,即2×2×2张。

显然,我们遇到了麻烦:如何书写100个、1000个相同因数相乘这样繁琐的式子呢?我们有必要创设一种新的表示方法来表示这样的运算。

问题二:

边长为a的正方形的面积为;。

棱长为a的正方体的体积为;。

学生动手操作,

观察纸片,发现规律。

回忆小学已学知识并独立完成。

目的是培养学生的观察及归纳能力。

让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式。

学习新知。

2个a相加可记为:a+a=2a。

3个a相加可记为:a+a+a=3a。

4个a相加可记为:a+a+a+a=4a。

n个a相加可记为:a+a+a+……+a=na。

类比可得:

2个a相乘可记为:embedunknown。

3个a相乘可记为:embedunknown。

4个a相乘可记为什么呢?

n个a相乘又记为什么呢?

其中叫做的n次方,也叫做的n次幂。叫做幂的底数可以取任何有理数;n叫做幂的指数,可以取任何正整数。

特殊地,可以看作的一次幂,也就是说的指数是1.

例如:读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘。x看作幂的话,指数为1,底数为x.

注意:当底数是负数或分数时,写成乘方形式时,必须加上括号。

在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解。

例1.填空:

(2)的底数是______,指数是______,它表示______;。

(3)的底数是______,指数是______,它表示_______;。

例2.计算:

教师引导。

学生口答。

学生边记录,边体会、理解。

学生口答。

分析例题并板书,巩固幂的意义,写出体现幂的意义的全过程。

体会类比的数学思想。

幂的乘方教案【第七篇】

1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。

2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。

归纳概念。

n个a相乘aaa=,读作:。其中n表示因数的个数。

求相同因数的积的运算叫作乘方。乘方运算的结果叫幂。

例1:计算。

(1)26(2)73(3)(3)4(4)(4)3。

例2:(1)()5(2)()3(3)()4。

想一想1.(1)10,(1)7,()4,()5是正数还是负数?

2.负数的幂的符号如何确定?

思考题:1、(a2)2+(b+3)2=0,求a和b的值。

2、计算(2)2009+(2)20xx。

1.某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这种细菌由1个可分裂成()。

a8个b16个c4个d32个。

2.一根长1cm的绳子,第一次剪去一半。第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为()。

a()3mb()5mc()6md()12m。

3.()3,()4,()5的从小到大的顺序是。

4.计算。

(1)(3)3(2)()2(3)02004(4)12004。

(5)104(6)()5(7)-()3(8)43。

(9)32(3)3+(2)223(10)-18(3)2。

5.已知(a2)2+|b5|=0,求(a)3(b)2.

会用科学计数法表示绝对值较大的数。

定义:一般地,一个大于10的数可以写成的形式,其中,n是正整数,这种记数法称为科学记数法。

例题教学。

例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至20xx年12月人们最后一次收到它发回的信号时,它已飞离地球12200000000km。用科学记数法表示这个距离。

例2:用科学记数法表示下列各数。

(1)10000000(2)57000000(3)123000000000。

例3.写出下列用科学记数法表示的数的原数。

思考:比较大小。

(1)与。

(2)与。

学怎样。

1.用科学记数法表示314160000得()。

2.稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为()。

3.人类的遗传物质是dna,dna是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()。

4.第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为。

5.比较大小:

;

6.用科学记数法表示下列各数。

幂的乘方教案【第八篇】

一、教学目标:

1、认知目标。

正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。

2、能力目标。

(1).通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

(2).使学生能够灵活地进行乘方运算。

3、情感目标。

让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。

二、教学重难点和关键:

1、{}教学重点:正确理解乘方的意义,掌握乘方运算法则。

2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,

3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。

三、教学方法。

考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。

四、教学过程:

1、创设情境,导入新课:

这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。

师:假如我现在抽取的是黑3红3黑4红5(幻灯片放映图片)如何算24?

师:如果四张都是3呢?

生答:-3-3×3×(-3)=。

生:思考几分钟后,有同学会想出的答案。

师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)。

2、动手实践,共同探索乘方的定义。

学生活动:请同学们拿出一张纸进行对折,再对折。

问题:(1)对折一次有几层?2。

(2)对折二次有几层?

(3)对折三次有几层?

(4)对折四次有几层?

师:一直对折下去,你会发现什么?

生:每一次都是前面的2倍。

师:请同学们猜想:对折20次有几层?怎样去列式?

生:20个2相乘。

师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?

简记:……。

师:请同学们总结对折n次有几层?可以简记为什么?

2×2×2×2……×2。

shapemergeformat。

n个2。

生:可简记为:

师:猜想:生:

师:怎样读呢?生:读作的次方。

的因数),叫做指数(相同因数的个数)。

注意:乘方是一种运算,幂是乘方运算的结果。看作是的次方的结果时,也可读作的次幂。

相关推荐

热门文档

59 1803347