首页 > 工作范文 > 范文大全 >

微积分论文精选4篇

网友发表时间 908326

【导言】此例“微积分论文精选4篇”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

微积分论文【第一篇】

关键词:微积分 牛顿 莱布尼兹 极限

1. 数学对自然科学的影响

数学是自然科学的基础学科,自然科学的发展离不开数学的发展。尤其是数学中的微积分理论 ,对整个自然科学的发展起了极大的推动作用 ,为自然科学中一些现象的解释提供了坚实的理论基础,使有限和无限、连续和离散、代数和几何形成了有机的结合与统一。在数学的众多学科分支中,就严谨性、应用性和简洁性而言,微积分应是最具代表性的学科之一。微积分以简洁、优美的形式把运动学问题、磁场问题、几何中曲线的切线问题、函数中最值问题、曲线长度及曲面面积和立体体积问题总结于一个高度统一的理论体系之中。因而,这一理论的产生被誉为数学史上乃至人类文明史上的伟大创造,受到历代数学家、物理学家、哲学家的盛赞。如果我们对其历史和现状作一番认真的考究,追溯这一理论产生的历史,将会使我们更深刻的认识到数学对自然科学发展所起的深刻影响。于此,微积分提出之后,遭到了许多人的猛烈抨击,其中也包括一些著名的数学家。牛顿继承和总结了先辈们的思想,作出了自己独到的建树。他把自己的发现称为“流数术”,称连续变化的量为流动量,无限小的时间间隔为瞬,而流量的速度称为流动率或流数。牛顿的“流数术”就是以流量、流数和瞬为基本概念的微分学,主观唯心论哲学家贝克莱是抨击微积分理论最强有力的人物。他愤恨牛顿的微积分理论给唯物论以支持,于是向流数术展开了猛烈的攻击。1734年,贝克莱出版了一本书:《分析学家:或一答致不信神数学家的论文,其中审查一下近代分析学的对象、原则及论断是不是比宗教的神秘,教义的主旨有更清晰的陈述,或更明确的推理。

2.关于微积分的本原问题

2.1 微积分使极限理论更加成熟

我们知道微积分的基础是极限论,而牛顿、莱布尼兹的极限观念是十分模糊的,牛顿的瞬和流数,莱布尼兹的dx和dy究竟是什么含义? 在他们各自的著述中没有给出明确和一贯的定义,在运用时也显得前后不一。牛顿和莱布尼兹在使用无限小量时,有时视瞬或dx为无限小增量,而有时视之为一个有限量加以运算,甚至把它作为零而忽略不计,这就在逻辑上造成明显的矛盾。牛顿曾用有限差值的最初比和最终比――一种萌芽状态的极限概念来说明流数的意义。但是当差值还未达到零时,其比值不是最终的,而当差值达到零时,它们比是0。怎样理解这样的最终比,牛顿也承认自己的方法只作出“简略的说明,而不是正确的论证。”而莱布尼兹的微积分以后,连当时在数学上颇有造诣的数学家象Bernoulli兄弟也颇感费解:“与其说有一种说明,还不如说是一个谜。”究竟极限是什么?无穷小是什么?在今天很容易理解。但在十九世纪以前还是一个数学上本质性的难题。基极限思想在当时也散见于各个时代著作中,如中国《庄子?天下篇》中“一尺之棰”、Zeno悖论、Endoxus的“穷竭法”、刘微的“割圆术”等和极限思想有直接关系,但这些都只能说是对极限有些模糊认识而已。十八世纪,许多数学家为维护微积分的应用价值和美学价值,在回击来自数学界内外的攻击同时,竭尽所能使微积分在理论上严密化、逻辑化,在形式更趋完美。在十八世纪前期,许多数学家,尤其是英国数学家总是企图使微积分与欧几里得几何结合起来,他们试图借助于几何学中论证之严谨体系去完善微积分。但这一努力是失败的,打破这一僵局的大数学家欧拉,他以代数方式研究微积分,力图用形式演算方式代替累赘的几何语言,使微积分建立在算术和代数基础上。达朗贝尔把牛顿的“最终比”发展为一种极限概念,并试图用极限加以定义和说明。他认为应以极限理论作为微积分的理论基础,这一思想在数学界产生了极其深远的影响。直到1821年以后,柯西出版他的《分析教程》、《无穷小计算讲义》、《无穷小计算在几何中应用》这几部具划时代意义的名著之后,微积分一系列基础概念及理正式明确地确定下来。自此以后,连续、导数、微分、积分、无穷级数的和概念也建立较坚实的理论基础之上―极限理论。我们现在所谓的极限的柯西定义或年之后半个世纪经过维尔斯特拉斯的加工才完成的。柯西把整个极限过程用不等式来刻画,使无穷的运算化为一系列不等式的推导。维尔斯特拉斯将柯西的完成了现今的-方法,形成了微积分的严谨之美。

2.2微积分―――状态与过程的统一

微积分是十七世纪数学所达到的最高成就。微积分出现以后,逐渐显示出它非凡的威力,过去许多数学家束手无策的问题,至此迎刃而解。恩格斯指出:“只有微分学才能使自然科学有可能用数学来不仅表明状态,并且也表明过程:运动。”然而,在十九世纪以前,微积分理论历史发展始终包含着矛盾:一方面纯粹分析及其应用领域中呈现出一个接一个的伟大发现与成就;另一方面则是基础理论的含糊性。事实上,无论是牛顿还是莱布尼兹,他们对微积分所作的论证都是不很严谨的和不清楚的。在欧洲大陆方面,莱布尼兹的含糊也招致了尼文(Nieuwentijt,荷兰哲学家)的反对。荷兰的物理学家和几何学家纽文也就一系列问题公开提出质问:无限小量与零怎样区别?无限个无限小量之和为什么能够是有限量?在推理过程中为什么能舍弃无限小量?包括一大批数学家也群起而攻之。尽管他们承认微积分的效用,欣赏微积分的美学价值,但却不能容忍这种方法的理论本身如此含糊甚至令人感到荒谬。法国数学家罗尔微积分为:“巧妙的谬论的汇集。”法国思想家伏尔泰则说微积分是一种“精确的计算和度量其存在无从想象的东西的艺术”。贝克莱和尼文太对微积分的攻击纯粹是消极的,他们不能给微积分以严格的基础,但他们的论点都有一定道理,在一定程度上它激励了微积分进一步的建设性工作。例如突变函数论、非线性泛函分析等学科的建立。因此,人们追求数学美,以达到精神上的愉悦,而这一点正是通过数学家经由数学的“神秘美”、“奇异美”和“朦胧美”,而最终达到完备的“统一美”和“和谐美”。

微积分―――分析与几何的统一

微积分的本原问题是指它同现实世界的关系问题,即它是产生于存在还是产生于纯思维的问题。唯物主义与唯心主义有着根本不同的看法。唯心主义认为纯数学产生于纯思维。它可以先验地,不需利用外部世界给我们提供的经验,而从头脑中创造出来。杜林、康德、贝克莱等唯心主义者就是这种观点的代表。牛顿、莱布尼茨是微积分的创立者。他们分别在研究质点运动和曲线的性质中,不自觉地把客观世界中的运动问题引进了数学。各自独立地创立了微积分。这个功劳是应该肯定的。但是,他们没有很好注意到微积分同现实世界的亲缘关系。其运算出发点是先验的。所以,马克思把牛、莱的微积分称为“神秘的微分学”唯物主义认为,微积分同所有的科学一样,它起源经验,然后又脱离外部世界,具有高度抽象性和相对独立性的一门崭新的科学恩格斯指出:“数学是从人的需要中产生的”微积分是从生产斗争和科学实验的需要中产生的。生产实践对微积分的创立起着决定的作用。从十五世纪开始,资本主义在西欧封建社会内部逐渐形成。到十七世纪,资本主义生产方式有了巨大发展。随着生产发展,自然科学技术也雨后春笋般地发展起来了。它们跑出来向数学敲门,提出了大量研究新课题。微积分的创立就是为了处理十六、十七世纪在生产实践和科学实验中所遇到的一系列新问题。这些问题归纳起来大致分为四类:一是已知物体运动的路程与时间的函数关系,求速度和加速度;反过来,已知物体运动的速度和加速度与时间的函数关系,求路程。二是求曲线的切线。三是求函数的极大值、极小值。四是求曲线的弧长,求曲线所围成的面积,曲面所围成的体积等求积问题上述四类问题,形式各不相同,但有着共同的本质,即都是反映客观事物的矛盾运动过程。其中的量都在不断变化着。因此,研究常量的初等数学无法解决这些问题。生产和科研的需要,促使数学由研究常量向研究变量转化。于是微积分在传统代数学的长期孕育中,经《解释几何》这个“助产婆”的接生“而分娩了”。所以,恩格斯说:“数学的转折点是笛卡尔的变数。有了变数,运动进入了数学。有了变数,辩证法进入了数学。有了变数,微分学和积分学也就立刻成了必要的了”。

3.牛顿―莱布尼茨公式――联结微分与积分的桥梁

唯物辩证法是关于普遍联系的科学。微分与积分是一对矛盾的两个方面。它们之间的联系集中表现在互逆关系上。微分是已知原函数求导数(微商);积分则是已知导数求原函数。微分与积分的互逆关系,揭示了导数与原函数的对立统一关系。原函数经过微分转化为导数。导数在积分过程中又还原为原函数。微分与积分相互转化的辩证过程普遍存在于自然界中。前面说过,水分子的蒸发与凝聚的过程就是微分与积分矛盾转化的过程;在几何学中长与宽、面积与体积的相互转化;在物理学中路程与速度、速度与加速度的相互转化,都可以用微分与积分相互转化来描述。微分与积分这种相互联系、相互转化的辩证内容尽管在现实世界早已存在。但在数学领域里,这种互逆关系在“牛顿―莱布尼茨公式”诞生前一直被隐藏,未被人们所认识。这是因为微分与积分在发展历史上各有渊源。在几何学中,前者和计算切线的斜率有关。后者则和计算曲边形的面积相联系。牛顿、莱布尼茨之所被认为是微积分的创立者,主要是他们发现了微分与积分的互逆关系,找到了根据导数求原函数的一种简便方法,从而把表面上互不相干的两种运算统一起来了,使微分与积分成为一种普遍意义的强有力的数学方法,为数学的发展开发开辟了一条新的康庄大道。牛顿―莱布尼茨公式是微积分的基本原理。它表述为设函数?(x))在(a? b)上连续。如果函数F(x)是函数?(x)的一个原函数,则有:b ∫ ?(x)dx=F(b)-F(a)a这个公式左边是一个定积分,右边是原函数在(a?b)两端值的差。它把数轴在一个区间的定积分同这个区间端点的原函数联系起来了,揭示了微分与积分的对立统一关系。为了说明这个问题,我们从分析具体问题入手,先来考察质点在直线上的变速运动。设时刻t时质点在直线上的位置是s(t),那么从时刻t=a到时刻t=b这一区间,质点运动的路程为s(b)-s(a)。这是质点运动的一个方面。

再从另一个方面看。设已知质点在时刻t内的瞬时速度为u(t),我们用另一种方法可从u(t)计算出质点所走过的路程为:b ∫ u(t)dta 由于这两个表达式都是表示同一质点在同一时间内所走过的路程,因而应该是相等的,即b ∫ u(t)dt= S(b)-S(a) a 从微分角度看,路程函数S(t)的微商是速度函数u(t)dS(t) ― =u(t) 或 dS(t)=u(t)dt dt b从积分角度看,速度函数u(t)的积分值∫ u(t)dt a 表达了路程函数S(t)的两点值之差S(b)-S(a)。这里的b是任意固定的,有一个b就有一个S(b)与之对应。这样当我们深入一步,从运动的角度看公式时,即把b视为变量t,它给出了用定积分表达路程函数的方法:t ∫ u(t)dt=S(t)-S(a)at 这就用变上限的积分∫ u(t)dt表达了路程函数S(t)。因而 adF(x)=?(x)dx在区间(a?b)上的无限积累。微分与积分的同一性与差异性都包函在牛―莱公式之中。其同一性的一面是微分与积分共处于牛―莱公式之中,互相依存,互相贯通,在一定的条件下相互转化。原函数在微分条件下转化为导函数;导函数在积分条件下转化为原函数。微分把“有限”转化为“无限”,而积分又把“无限”转化为“有限”。牛―莱公式就是在这种“有限――无限――有限”的转化中,把定积分计算变为不定积分计算,把繁杂的极限计算转化为原函数两点值之差的运算。从而找到了计算定积分的捷径。然而,牛―莱公式的两边不是绝对的同一,绝对的统一,绝对的转化,而的有差别的同一,对立的统一,有条件的转化。公式的两边仅仅是数量上的同一,两边各自的性质、地位与作用并不相同。这个不同正是微分与积分的差异性,即互逆关系的表现。归纳起有三个方面:其一,两者所反映的事物性质不同。在物理学中微分所描述的是物体运动的路程向速度转化以及速度向加速度转化的过程;而积分却反其道而行之,它描写的是加速度转化为速度,速度转化为路程的过程。在几何学中微分就是求曲线的切线;而积分是求弧长,求曲线所围成的面积,曲面所围成的体积。一般地讲,微分就是已知函数求函数的变化率;而积分是根据函数的变化率求函数。其二、两者所处的地位不同。在微分与积分这对矛盾中,一般地说微分是矛盾的主要方面,居于支配地位;积分是矛盾的次要方面,居于被支配地位。微分是积分运算的前提和基础。进行积分运算,首先要“化整为零”,进行无限分割,即微分。无微分就不可能进行积分。但是积分又不是消极被动的。在导函数向原函数转化过程中,最后是由积分来完成的。没有积分就无法完成这一转化。其三、各自的作用不同。微分是把整体分成无限多个无穷小量,完成以“直”代“曲”的转化;而积分又把无穷多的无限小量累积起来,实现以“以曲代直”。微积分的“曲”与“直”、“有限”与“无限”的相互转化正是在微分与积分的相互作用、相互制约下实现的。它推动微积分的基本矛盾――“直”与“曲”,“匀”与“不匀“的矛盾运动,解决了初等数学无法解决的矛盾。

参考文献:

[1]张楚迁《数学文化》高等教育科学出版社

[2]张顺燕《数学的源与流》《数学的美与理》

[3]邓东皋 孙小礼 《数学与文化》

[4]克莱茵 《古今数学思想》

[5] 王树和《数学思想史》

[6]李文林《数学史概论》

[7]石开屏《大学生科普读物》

微积分论文【第二篇】

关键词 微分中值定理 积分中值定理 关系

中图分类号 G427 文献标识码 A 文章编号 1006-5962(2012)05(a)-0056-02

1 引言

微分中值定理与积分中值定理是微积分学的基本定理和理论基础,不论在理论的逻辑证明方面还是应用上都起着重要作用。初学者在学习过程中对二者的理解常常不够全面和深刻,会孤立的看待微分中值定理和积分中值定理。因此,本文将对二者的关系进行探讨,并通过实例说明其联系。

2 微分中值定理与积分中值定理

定理1:(罗尔定理)设函数在闭区间上连续,在开区间上可导,且,则至少存在一点,使得。

定理2:(拉格朗日定理)设函数在闭区间上连续,在开区间上可导,则至少存在一点,使得。

定理3:(柯西定理)设函数都在闭区间上连续,在开区间上可导,且对于任意,则至少存在一点,使得。

定理4:(积分中值定理)若在上连续,则在内至少有一点,使得。

定理5:(积分第一中值定理)若都在上可积,在上不变号,则存在,使得分别表示在的下确界和上确界。

特别地,若在上连续,则存在,使得。

加强定理5的条件,可得:

定理6:若在上连续,且在上无零点,则在中至少存在一点,使得,在中至少存在一点,使得。

3 定理关系

微分中值定理间的关系

拉格朗日定理是柯西定理的特殊情况

当定理3中的时,可得:,即为定理2之结论。

罗尔定理是拉格朗日定理的特殊情况

在定理2的条件中,若满足,则得到,即为定理1之结论。

微分中值定理与积分中值定理的关系

定理4可推出定理2

定理4条件中在上连续,则在上一定存在原函数,;故满足定理2条件:在闭区间上连续,在开区间上可导;由定理4结论:(1);与牛顿莱布尼茨公式:(2);得

即(3);(3)式即为定理2的结论。

加强定理2的条件可推出定理4

定理2中,若将条件加强为在闭区间上可导,且其一阶导数在上连续,则可得定理4结论。

由(2)式:与(3)式:

得 即(4)

(4)式即为定理4的结论。

定理6可推出定理3

定理6条件中,在上连续,则一定有连续原函数,设,且在上无零点,则,。故定理6的题设条件中一定满足定理3的条件。

由定理6可知在上存在使:

;

,故

即(5),也即(6)

设,则在上有一阶连续导数,

将代入,得:

可知:。由定理4知,在中至少存在一点,使得

故,也即(7)

由(5)、(6)、(7)式可得,在中至少存在一点,使得

(8)

(8)式为定理3的结论。

6)加强定理3的条件可推出定理6

将定理3条件加强为在上连续可导,设,

,由定理3,在内至少存在一点,使

(9)

而,

即整理得(10)

同理可证,在内至少存在一点,使得

(11)

(10)、(11)式为定理6的结论。

4 实例说明微分中值定理与积分中值定理的关系

设在上连续,在内有一阶连续导数,证明:必有,使。

证明:1)首先用“微分中值定理”证明。令

(12)

由“柯西中值定理”:都在上连续,在上可导,且对于任意,则至少存在一点,使得

即(13)

2)其次利用“积分中值定理”证明。

由(12)式得,根据题设条件知在上连续,故在上可积,

(14)

由“积分中值定理”可得:(15)

又(16)

所以由(15)式与(16)式可知:

,

即(17)

参考文献

[1] 赵树嫄。微积分(第三版)[M].北京:中国人民大学出版社,2007.

[2] 陈纪修,於崇华,金路。数学分析[M].北京:高等教育出版社,2009.

[3] 同济大学数学系。高等数学(第六版上册)[M].北京:高等教育出版社,2006.

[4] 陈宁。微积分基本定理-微积分历史发展的里程碑[J].工科数学,2000.

[5] 罗敏娜。基于数学史背景的微积分教学[J].沈阳师范大学学报(自然科学版),2011.

微积分论文【第三篇】

学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面小编给大家带来2021最新数学方向毕业论文题目有哪些,希望能帮助到大家!

中学数学论文题目1、用面积思想方法解题

2、向量空间与矩阵

3、向量空间与等价关系

4、代数中美学思想新探

5、谈在数学中数学情景的创设

6、数学创新思维及其培养

7、用函数奇偶性解题

8、用方程思想方法解题

9、用数形结合思想方法解题

10、浅谈数学教学中的幽默风趣

11、中学数学教学与女中学生发展

12、论代数中同构思想在解题中的应用

13、论教师的人格魅力

14、论农村中小学数学教育

15、论师范院校数学教育

16、数学在母校的发展

17、数学学习兴趣的激发和培养

18、谈新课程理念下的数学教师角色的转变

19、数学新课程教材教学探索

20、利用函数单调性解题

21、数学毕业论文题目汇总

22、浅谈中学数学教学中学生能力的培养

23、变异思维与学生的创新精神

24、试论数学中的美学

25、数学课堂中的提问艺术

26、不等式的证明方法

27、数列问题研究

28、复数方程的解法

29、函数最值方法研究

30、图象法在中学数学中的应用

31、近年来高考命题研究

32、边数最少的自然图的构造

33、向量线性相关性讨论

34、组合数学在中学数学中的应用

35、函数最值研究

36、中学数学符号浅谈

37、论数学交流能力培养(数学语言、图形、符号等)

38、探影响解决数学问题的心理因素

39、数学后进学生的心理分析

40、生活中处处有数学

41、数学毕业论文题目汇总

42、生活中的数学

43、欧几里得第五公设产生背景及对数学发展影响

44、略谈我国古代的数学成就

45、论数学史的教育价值

46、课程改革与数学教师

47、数学差生非智力因素的分析及对策

48、高考应用问题研究

49、“数形结合”思想在竞赛中的应用

50、浅谈数学的文化价值

51、浅谈数学中的对称美

52、三阶幻方性质的探究

53、试谈数学竞赛中的对称性

54、学竞赛中的信息型问题探究

55、柯西不等式分析

56、中国剩余定理应用

57、不定方程的研究

58、一些数学思维方法的证明

59、分类讨论思想在中学数学中的应用

60、生活数学文化分析

数学研究生论文题目推荐1、混杂随机时滞微分方程的稳定性与可控性

2、多目标单元构建技术在圆锯片生产企业的应用研究

3、基于区间直觉模糊集的多属性群决策研究

4、排队论在交通控制系统中的应用研究

5、若干类新形式的预条件迭代法的收敛性研究

6、高职微积分教学引入数学文化的实践研究

7、分数阶微分方程的Hyers-Ulam稳定性

8、三维面板数据模型的序列相关检验

9、半参数近似因子模型中的高维协方差矩阵估计

10、高职院校高等数学教学改革研究

11、若干模型的分位数变量选择

12、若干变点模型的经验似然推断

13、基于Navier-Stokes方程的图像处理与应用研究

14、基于ESMD方法的模态统计特征研究

15、基于复杂网络的影响力节点识别算法的研究

16、基于不确定信息一致性及相关问题研究

17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究

18、广义时变脉冲系统的时域控制

19、正六边形铺砌上H-三角形边界H-点数的研究

20、外来物种入侵的广义生物经济系统建模与控制

21、具有较少顶点个数的有限群元阶素图

22、基于支持向量机的混合时间序列模型的研究与应用

23、基于Copula函数的某些金融风险的研究

24、基于智能算法的时间序列预测方法研究

25、基于Copula函数的非寿险多元索赔准备金评估方法的研究

26、具有五个顶点的共轭类类长图

27、刚体系统的优化方法数值模拟

28、基于差分进化算法的多准则决策问题研究

29、广义切换系统的指数稳定与H_∞控制问题研究

30、基于神经网络的混沌时间序列研究与应用

31、具有较少顶点的共轭类长素图

32、两类共扰食饵-捕食者模型的动力学行为分析

33、复杂网络社团划分及城市公交网络研究

34、在线核极限学习机的改进与应用研究

35、共振微分方程边值问题正解存在性的研究

36、几类非线性离散系统的自适应控制算法设计

37、数据维数约简及分类算法研究

38、几类非线性不确定系统的自适应模糊控制研究

39、区间二型TSK模糊逻辑系统的混合学习算法的研究

40、基于节点调用关系的软件执行网络结构特征分析

41、基于复杂网络的软件网络关键节点挖掘算法研究

42、圈图谱半径问题研究

43、非线性状态约束系统的自适应控制方法研究

44、多维power-normal分布及其参数估计问题的研究

45、旋流式系统的混沌仿真及其控制与同步研究

46、具有可选服务的M/M/1排队系统驱动的流模型

47、动力系统的混沌反控制与同步研究

48、载流矩形薄板在磁场中的随机分岔

49、广义马尔科夫跳变系\\统的稳定性分析与鲁棒控制

50、带有非线性功能响应函数的食饵-捕食系统的研究

51、基于观测器的饱和时滞广义系统的鲁棒控制

52、高职数学课程培养学生关键技能的研究

53、基于生存分析和似然理论的数控机床可靠性评估方法研究

54、面向不完全数据的疲劳可靠性分析方法研究

55、带平方根俘获率的可变生物种群模型的稳定性研究

56、一类非线性分数阶动力系统混沌同步控制研究

57、带有不耐烦顾客的M/M/m排队系统的顾客损失率

58、小波方法求解三类变分数阶微积分问题研究

59、乘积空间上拓扑度和不动点指数的计算及其应用

60、浓度对流扩散方程高精度并行格式的构造及其应用

专业微积分数学论文题目1、一元微积分概念教学的设计研究

2、基于分数阶微积分的飞航式导弹控制系统设计方法研究

3、分数阶微积分运算数字滤波器设计与电路实现及其应用

4、分数阶微积分在现代信号分析与处理中应用的研究

5、广义分数阶微积分中若干问题的研究

6、分数阶微积分及其在粘弹性材料和控制理论中的应用

7、Riemann-Liouville分数阶微积分及其性质证明

8、中学微积分的教与学研究

9、高中数学教科书中微积分的变迁研究

10、HPM视域下的高中微积分教学研究

11、基于分数阶微积分理论的控制器设计及应用

12、微积分在高中数学教学中的作用

13、高中微积分的教学策略研究

14、高中微积分教学中数学史的渗透

15、关于高中微积分的教学研究

16、微积分与中学数学的关联

17、中学微积分课程的教学研究

18、高中微积分课程内容选择的探索

19、高中微积分教学研究

20、高中微积分教学现状的调查与分析

21、微分方程理论中的若干问题

22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程

23、基于偏微分方程图像分割技术的研究

24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性

25、几类分数阶微分方程的数值方法研究

26、几类随机延迟微分方程的数值分析

27、微分求积法和微分求积单元法--原理与应用

28、基于偏微分方程的图像平滑与分割研究

29、小波与偏微分方程在图像处理中的应用研究

30、基于粒子群和微分进化的优化算法研究

31、基于变分问题和偏微分方程的图像处理技术研究

32、基于偏微分方程的图像去噪和增强研究

33、分数阶微分方程的理论分析与数值计算

34、基于偏微分方程的数字图象处理的研究

35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程

36、反射倒向随机微分方程及其在混合零和微分对策

37、基于偏微分方程的图像降噪和图像恢复研究

38、基于偏微分方程理论的机械故障诊断技术研究

39、几类分数阶微分方程和随机延迟微分方程数值解的研究

40、非零和随机微分博弈及相关的高维倒向随机微分方程

41、高中微积分教学中数学史的渗透

42、关于高中微积分的教学研究

43、微积分与中学数学的关联

44、中学微积分课程的教学研究

45、大学一年级学生对微积分基本概念的理解

46、中学微积分课程教学研究

47、中美两国高中数学教材中微积分内容的比较研究

48、高中生微积分知识理解现状的调查研究

49、高中微积分教学研究

50、中美高校微积分教材比较研究

51、分数阶微积分方程的一种数值解法

52、HPM视域下的高中微积分教学研究

53、高中微积分课程内容选择的探索

54、新课程理念下高中微积分教学设计研究

55、基于分数阶微积分的线控转向系统控制策略研究

56、基于分数阶微积分的数字图像去噪与增强算法研究

57、高中微积分教学现状的调查与分析

58、高三学生微积分认知状况的思维层次研究

59、分数微积分理论在车辆底盘控制中的应用研究

微积分论文【第四篇】

马克思(1818—1883)的伟大贡献,正像恩格斯在马克思墓前演讲中所说:达尔文发现了有机界的发展规律,马克思发现了人类历史的发展规律,揭示了经济基础和上层建筑的相互关系;在对资本主义生产方式的深入研究中,他发现了“剩余价值”,从而获得了开启社会奥秘的钥匙。[1](P574—575)马克思的《资本论》至今还在许多国家重印发行,显示出马克思主义的强大生命力。在西方著名大学中普遍设有马克思主义课程。

在20世纪与21世纪之交,在告别人类纪元第二个千年,迎接第三个千年到来之际,1999年,英国剑桥大学文理学院的教授们发起了一个评选“千年第一伟人”活动,征询、推选和投票的结果是:马克思第一,爱因斯坦第二。随后,英国广播公司(BBC)在国际互联网上进行全球投票评选第二个千年的前10名思想家,其结果为:马克思第一,爱因斯坦第二。接着,路透社又邀请各界名人再行评选时,爱因斯坦以一票之多领先于甘地和马克思。依据这一系列的评选结果,人们公认马克思和爱因斯坦(1879—1955)应并列为千年第一伟人。

凡读过马克思的著作,特别是《资本论》的人,都为马克思的学术研究方法及其学术成就而折服。他对所研究的问题,不但拥有丰富的实际资料,而且占有大量的文献资料,在理论论述中,不但处处闪耀着深刻的思想火花,尤其渗透着那种一步一步深入进去的强有力的逻辑力量。北京大学的江泽涵教授是我国著名的前辈数学家,我国拓扑学这门学科的奠基人,也是马克思《数学手稿》的最主要译者,他读了《资本论》第一卷以后,深有感慨地说:“马克思研究资本主义的方法同我们研究数学的方法是一样的,《资本论》的论证方法同我们的数学论证方法一样,都是严密地从逻辑上一步步推理和展开,真是无懈可击,令人信服。”《资本论》作为研究早期资本主义社会的经典著作,展显为一个逻辑严密的理论体系,正因为其研究方法之缜密而至今仍然得到全世界学者们的高度赞赏。

马克思数学手稿的具体内容

恩格斯称马克思为“科学巨匠”。他说,马克思研究的科学领域是很多的,而且对任何一个领域都不是肤浅地研究的,甚至在数学领域也有独到的发现。[1](P574—575)

马克思一生酷爱数学,从19世纪40年代起,直到逝世前不久,数十年如一日地利用闲暇时间学习和钻研数学,给我们留下了近千页数学手稿,其中有读书摘要、心得笔记和述评,以及一些研究论文的草稿。20世纪30年代以后,马克思的数学手稿和其他手稿一起,一直保存在荷兰首都阿姆斯特丹的国际社会史研究所的档案馆中。

数学研究紧密结合经济学研究

起初,马克思在与恩格斯和其他人的通信中讨论初等数学问题居多。例如,他在1864年的一封信中有关于数字计算的议论:“可以看出:不太大的计算,例如在家庭开支和商业中,从来不用数字而只用石子和其他类似的标记在算盘上进行。在这种算盘上定出几条平行线,同样几个石子或其他显著的标记在第一行表示几个,在第二行表示几十,在第三行表示几百,在第四行表示几千,余类推。这种算盘几乎整个中世纪都曾使用,直到今天中国人还在使用。至于更大一些的数学计算,则在有这种需要之前古罗马人就已有乘法表或毕达哥拉斯表,诚然,这种表还很不方便,还很繁琐。因为这种表一部分是用特殊符号,一部分是用希腊字母(后用罗马字母)编制成的。……在作很大的计算时,旧方法造成不可克服的障碍,这一点从杰出的数学家阿基米得所变的戏法中就可以看出来。”[2](P650)

1864年5月30日,恩格斯在给马克思的信中写道:“看了你那本弗朗克尔的书,我钻到算术中去了;……以初等方式来陈述诸如根、幂、级数、对数之类的东西是否方便。不管怎样好地利用数字例题来说明,我总觉得这里只限于用数字,不如用a+b作简单的代数说明来得清楚,这是因为用一般的代数式子更为简单明了,而且这里不用一般的代数式子也是不行的。”[3](P357)马克思关于数学的笔记和他研究政治经济学的材料有紧密的联系。在1846年的一个经济学笔记本中,最后几页全是各种代数运算;在以后的许多笔记本中也都记有数学公式和图形,还有整页整页的算草;在为撰写《政治经济学批判大纲》准备材料的笔记本中他画了一些几何图形,记录了关于分数指数和对数的公式。1858年1月11日马克思在致恩格斯的信中说:“在制定政治经济学原理时,计算的错误大大地阻碍了我,失望之余,只好重新坐下来把代数迅速地温习一遍。算术我一向很差,不过间接地用代数方法,我很快又会计算正确的。”[4](P247)马克思曾为自己能把高等数学的某些公式用于经济学的研究而深感高兴。1868年1月8日马克思写信给恩格斯谈到工资问题的研究时,他说:“工资第一次被描写为隐藏在它后面的一种关系的不合理的表现形式,这一点通过工资的两种形式即计时工资和计件工资得到了确切的说明(在高等数学中常常可以找到这样的公式,这对我很有帮助)。”[5](P12)

看来,马克思的数学兴趣与他希望把数学运用于经济学研究有关。在1873年5月31日给恩格斯的信中谈到经济危机的研究时,他说:“为了分析危机,我不止一次地想计算出这些作为不规则曲线的升和降,并曾想用数学公式从中得出危机的主要规律(而且现在我还认为,如有足够的经过检验的材料,这是可能的)。”[6](P87)在《资本论》中我们也能看到数学的运用,据拉法格回忆,马克思曾经强调说:一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。[7](P8)我理解,马克思这里所说的运用数学,不仅仅是运用数学的计算方法,而且也要运用数学的思维方法和论证方法。

对微积分的学习、思索和历史考察

19世纪60年代以后,马克思陆续阅读了一大批微积分方面的书籍,其中有布沙拉(J•L•Boucharlat)、辛德(J•Hind)、拉库阿(S•F•Lacroix)、霍尔(G•Hall)等人各自编写的微积分教科书,还有牛顿有关的数学原著等等,写下了详细的读书笔记。马克思对这些教科书进行比较,开始了自己对于微分学中一些问题的独立的思考。于1881年前后,马克思撰写了关于微分学的历史发展进程、论导函数概念、论微分以及关于泰勒定理等问题的研究草稿,而且对于这些问题都曾写过多遍草稿,例如,关于泰勒定理留下了八份草稿。

马克思把微分学看作科学上的一种新发现、新事物,考察它是怎样产生的,产生以后遇到一些什么困难,经历了怎样的曲折发展。马克思对微积分有过一段生动的而又富有哲理的描述:“人们自己相信了新发现的算法的神秘性。这种算法通过肯定是不正确的数学途径得出了正确的(尤其在几何应用上是惊人的)结果。人们就这样把自己神秘化了,对这新发现评价更高了,使一群旧式正统派数学家更加恼怒,并且激起了敌对的叫嚣,这种叫嚣甚至在数学界以外产生了反响,而为新事物开拓道路,这是必然的。”[8](P88)

马克思把从牛顿(1642—1727)、莱布尼茨(1646—1716)创建微分学到拉格朗日(—1813)的发展,约一百多年的发展过程分为三个阶段,分别称为:“神秘的微分学”、“理性的微分学”、“纯代数的微分学”。在牛顿和莱布尼茨时期,新生的微积分很快在应用上获得了惊人的成功,但是从旧的传统数学看来,这种新算法,比如微分过程,正是通过不正确的数学途径得到正确的结果的。在同一个公式的推导过程中Δx和dx既作为有限的量,却又消失为零,在逻辑上显示出矛盾;时为什么能有确定的值,等等,都不能从理论上给出合理的解释。人们认为微分学是神秘的。牛顿和莱布尼茨,以及后继者们都希望给微分学找到合乎逻辑的说明,他们为此付出了很大的努力。以达朗贝尔(J•L•R•D’Alembert,1717-1783)为代表的“理性的微分学”和以拉格朗日为代表的“纯代数的微分学”,都是这种努力的一定阶段的成果。马克思指出:“这里,像在别处一样,给科学撕下神秘的面纱是重要的。”[8](P139)转马克思力图运用辩证法观点去分析微分学的困难。他认为“理解微分运算时的全部困难”,“正像理解否定之否定本身”一样,要把“否定”理解为发展的环节,并且要从量和质的统一看待量的变化。在微分过程中,在量的否定,比如量的消失中,看到其间仍保存着特定的质的关系,即y对x的函数关系所制约的质的关系。因此,当增量Δx变为零,Δy也变为零,时能具有特定的值,即导函数。马克思说,要把握的真正含义,“唯一的困难是在逐渐消失的量之间确定一个比的这种辩证的见解。”[9](P16)

马克思以比较简单的多项式函数的微分过程为例,参照比较了多种教科书,运用上述观点,选择了一种具体的推导步骤以说明这种函数的微分过程的合理性,从而说明微分学的神秘性是可以摆脱的。这样的内容,现在看来固然是很浅显的,也不足以说明一般函数的微分过程。但这也是马克思为撕下微分学的神秘面纱所做的一份历史性的努力。

马克思曾劝说恩格斯研究微积分。他在1863年7月6日给恩格斯的信中说:“有空时我研究微积分。顺便说说,我有许多关于这方面的书籍,如果你愿意研究,我准备寄给你一本。我认为这对于你的军事研究几乎是必不可缺的。况且,这个数学部门(仅就技术方面而言),例如同高等代数比起来,要容易得多。除了普通代数和三角以外,并不需要先具备什么知识,但是必须对圆锥曲线有一个一般的了解。”[2](P357)

马克思对高等数学的兴趣和钻研影响和带动了恩格斯,1865年以后,他们在通信中讨论得更多的则是微积分方面的问题了。马克思在一封给恩格斯的信的附件中说:“全部微分学本来就是求任意一条曲线上的任何一点的切线。我就想用这个例子来给你说明问题的实质。”马克思是用求抛物线y[2]=ax上某一点m的切线的例子,认真画了图,向恩格斯作详细讲解的。[3](P168—169)

1881年马克思把一份“论导数概念”的手稿和一份“论微分”手稿誊抄清楚,先后寄给了恩格斯。恩格斯认真阅读了这些手稿,于1881年8月18日给马克思写了一封很长的讨论导函数的回信,信中说:“这件事引起我极大的兴趣,以致我不仅考虑了一整天,而且做梦也在考虑它:昨天晚上我梦见我把自己的领扣交给一个青年人去求微分,而他拿着领扣溜掉了。”[10](P21—23)

在马克思的影响下,恩格斯对微积分也越来越有兴趣了,他在《反杜林论》、《自然辩证法》等哲学著作中,不但大段大段地谈论微积分,精辟地分析高等数学与初等数学的区别,而且还有对于微积分的高得不能再高的赞誉:“在一切理论成就中,未必再有什么像十七世纪下半叶微积分的发明那样看作人类精神的最高胜利了。如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正在这里。”[11](P611)

从数学中学习辩证法

马克思和恩格斯都非常明确地认为,数学是建立辩证唯物主义哲学的一个重要基础。恩格斯指出:“要确立辩证的同时又是唯物主义的自然观,需要具备数学和自然科学的知识。”[12](第三版序言)

在旧哲学中,黑格尔是论述数学比较多的。恩格斯曾经指出:“黑格尔的数学知识极为丰富,甚至他的任何一个学生都没有能力把他遗留下来的大量数学手稿整理出版。据我所知,对数学和哲学了解到足以胜任这一工作的唯一的人,就是马克思。”[3](P471)马克思忙于自己的研究和革命活动,并没有承担这一工作。不过,他在数学手稿中把微分学的发展同德国唯心主义哲学的发展联系起来,作了有趣的对比。当他探讨牛顿、莱布尼茨与他们的后继者的关系时,他说:“正像这样,费希特继承康德,谢林继承费希特,黑格尔继承谢林,无论费希特、谢林、黑格尔都没有研究过康德的一般基础,即唯心主义本身;否则他们就不能进一步发展康德的唯心主义。”[8](P88)转马克思把研究数学作为丰富唯物辩证法的一个源泉。他通过自己对数学的多年钻研,深有体会地认为,在高等数学中,他找到了最符合逻辑的同时又是形式最简单的辩证运动。在马克思的数学手稿中能够看到这方面的记述。

数学手稿的出版、翻译和人们的看法

马克思曾经打算把自己对数学的一些研究成果写成正式论文,但他反复改写了多遍草稿,却没有来得及写完。他生前曾嘱咐小女儿爱琳娜:“要她和恩格斯一起处理他的全部文稿,并关心出版那些应该出版的东西,特别是第二卷(按:指《资本论》第二卷)和一些数学著作。”[13](P42)马克思逝世以后,恩格斯也曾希望把自己在自然辩证法方面的研究成果同马克思遗留下来的数学手稿一齐发表。[11](第三版序言)但是由于他肩负着整理出版马克思的最重要的著作——《资本论》第二卷、第三卷的重任,上述愿望没有能够实现。

马克思关于微分学的几篇论文草稿和一些札记于1933年译成俄文与读者见面,即在纪念马克思逝世五十周年的时候才第一次发表在苏联的理论刊物《在马克思主义旗帜下》,随后收入文集《马克思主义与自然科学》。1968年在前苏联出版了马克思数学手稿的比较完全的德俄对照本[14],书中对各个时期的手稿写了较详细的记述。此外,对马克思的数学手稿,还陆续出版过内容和编排不一的德文本、日文本、意大利文本等等。在国际学术界引起了学者们的重视和兴趣。如日本的玉木美彦、今野武雄早就撰文介绍过马克思数学手稿的内容。1977年在西德召开的国际数学史会议上,美国学者肯尼迪(H•C•Kennedy)作了题为《马克思与微积分基础》的学术报告。美国著名数学史家斯特洛依克(D•J•Struik)1978年在《数学评论》杂志上写文章介绍了这篇报告。前几年,还有美国科学史方面的研究生在研究马克思数学手稿的传播和影响。

在我国,早从1949年起,许默夫就发表过关于马克思数学手稿的文章(注:许默夫的有关马克思数学手稿的几篇文章,先后发表在《东北日报》(1949年5月5日)、《自然科学》(1951年第1卷)、《数学通报》(1958年第12期)、《新科学》(1955年第2期)等报刊上。),后来有些学者从日文本或俄文本将部分内容翻译过来。1973年1月北京大学成立了马克思数学手稿编译组,依据苏联1968年出版的德俄对照本进行翻译。为了翻译准确,为了能从德文原文直接译成中文,北京大学于1974年通过外交途径从荷兰购得全部数学手稿原件的复印照片,将其中关于微积分的大部分论述和部分初等数学札记翻译成中文,编排成书,由人民出版社于1975年正式出版。(注:1973年1月,当时马克思恩格斯列宁著作编译局的负责人王惠德同志把一本《马克思数学手稿》(1968年的德俄对照本,是一位瑞士记者送给他的)交给了孙小礼,建议由北京大学来组织翻译。北大欣然接受这一建议,立即成立了北京大学马克思数学手稿编译组,由邓东皋、孙小礼具体负责,动员了数学系、西语系、俄语系、哲学系的教师参加翻译工作,德文方面有江泽涵、姚保琮、冷生明、丁同仁等人,俄文方面有吴文达、黄敦、郭仲衡、鲍良骏、颜品中等人。1974年3月译出了马克思关于微积分的大部分论述,请于光远、胡世华、陆汝钤和编译局杨彦君等同志帮助校对后,于1974年5月由北京大学学报印出专刊:马克思数学手稿(试译本)。1974年冬购得马克思数学手稿原件的照片后,由谙悉德文的江泽涵、姚保琮两位教授仔细辨认马克思原稿手迹,同冷生明、丁同仁、邓东皋等人反复讨论推敲,对原来的译文进行核校、修改和补充。最后又请北京师范大学的张禾瑞教授、蒋硕民教授对全部译稿从德文作了详细校订之后,才由人民出版社于1975年7月出版了马克思的《数学手稿》。)两种极端的看法

马克思《数学手稿》一书于1975年在我国编译出版以后,出现了两种极端的看法。一是过分地在数学上抬高马克思,说马克思为微积分奠定了理论基础,把19世纪许多卓越数学家的重要成就都视为形而上学,惟有马克思的论述才是符合辩证法的,甚至要在教学中用马克思《数学手稿》代替微积分教材。这种作法显然是极其错误的,既违背马克思的本意,也不符合数学发展的实际,对于高等数学教学只能产生有害的影响。另一种极端的看法则认为马克思根本不懂数学,至少不懂高等数学,写于19世纪的《数学手稿》没有什么学术价值,不值得翻译出版。这种完全否定的态度也是缺乏历史分析、不符合实际的。

由于这两种看法在不同程度上一直延续到现在,所以,我感到把马克思的《数学手稿》放在当时的历史条件下,根据其具体内容,作出实事求是的恰当的评价是必要的,有现实意义的。

数学手稿:一份宝贵的历史文献

通过阅读马克思数学手稿,以及马克思的著作和通信中有关数学的论述,联系到几十年来马克思数学手稿在我国的翻译、介绍、出版和影响,我特撰写本文谈谈自己对马克思数学手稿的理解和看法,就教于对此有兴趣的朋友们,也作为对马克思逝世120周年的纪念。

读读马克思数学手稿,就感到马克思是深钻到数学中去了,确如恩格斯所说:“马克思是精通数学的。”[12]当然,所谓“精通”,不能要求马克思通晓当时数学的全部,正好像现在堪称“精通”数学的专家也不可能对当前数学的全部内容都了如指掌一样。事实上,正如恩格斯所说:“对于自然科学,我们只能作零星的、时停时续的、片断的研究”,而且“自然科学本身也正处在如此巨大的变革过程中,以至那些即使有全部空闲时间来从事于此的人,也很难跟踪不失”[12]。马克思生前还没有来得及跟踪19世纪数学分析方面的重要成就,还没有阅读当时已经出版的,像哥西的《分析教程》(1821年初版)那样的一些重要著作。由于马克思还不了解微积分经过波尔察诺(,1781-1848)、哥西(,1789-1857)、外尔斯特拉斯(,1815-1897)等数学家的努力以后所取得的逐步“完善”的形式,因而他也不可能运用极限理论做出像后来人们所理解的那样来阐明微积分的本质。

马克思不是专职数学家,也没有对数学本身做出重大建树,他的数学手稿之所以受到人们重视,首先,因为他是人类历史上的伟大思想家,而他又在数学这一园地上数十年如一日地执着地辛勤耕耘过,这一事迹是人类文化史上所罕见的,是历史上任何一位思想家都难以相比的。现在我们读到的数学手稿,就是他以自己的独特方式辛勤耕耘的历史足迹,这足迹能够保留下来,为世人所知,是令人感到宝贵的,而且值得加以研究和回味,从中获得有益的启迪。

其次,在马克思数学手稿中,确有至今还在闪光的思想和见解。比如马克思在考察了微分学的具体历史发展过程以后,曾作出这样的论断:“新事物和旧事物之间的真实的从而是最简单的联系,总是在新事物自身取得完善的形式后才被发现。”[8](P144)这是对新旧事物关系的哲理性概括,也是对人的认识规律的哲理性概括,对人们的认识进展很有启发。

第三,在马克思主义理论中,非常注重人,尤其注重人的全面发展。马克思对自由时间或闲暇时间,也就是非劳动时间的重要性有深刻的论述,他把自由时间看作财富,把休闲看作人的生活的重要组成部分。那么,马克思自己怎样度过闲暇时间呢?据马克思的女婿拉法格回忆:“除了读诗歌和小说以外,马克思还有一种独特的精神休养方法,这就是他十分喜爱的数学。代数甚至给他以精神上的安慰;在他那惊涛骇浪的一生中有些最痛苦的时期,他总是以此自慰。”[7](P8)马克思曾对恩格斯说:“在工作之余——当然不能老是写作——我就搞搞微分学。我没有耐心再去读别的东西。任何其他读物总是把我赶回写字台来。”[3](P124)马克思对数学的特殊爱好,使他在任何情况下都能使自己沉浸于数学之中。当马克思的夫人燕妮身患重病——肝癌的时候,他给恩格斯写信说:“写文章现在对我来说几乎是不可能了。我能用来使心灵保持必要平静的唯一的事情,就是数学。”[2](P113)他的关于微分学的研究草稿,正是在1881年燕妮病危的那些痛苦的日子里写作的。

在马克思的数学手稿中,能看到很多幽默俏皮的语言和生动有趣的比喻。可以想见,数学曾是马克思寻求欢乐和安慰的休闲王国,在马克思的一生中有许多时日是在这里愉快地度过的,上千页的数学手稿就是马克思这种独特的精神休养法的真实记录。

综上所述,我认为,马克思数学手稿是一份宝贵的有特殊价值的历史文献。

参考文献

[1]马克思恩格斯选集:第3卷[M].北京:人民出版社,1971.

[2]马克思恩格斯全集:第30卷[M].北京:人民出版社,1975.

[3]马克思恩格斯全集:第31卷[M].北京:人民出版社,1972.

[4]马克思恩格斯全集:第29卷[M].北京:人民出版社,1972.

[5]马克思恩格斯全集:第32卷[M].北京:人民出版社,1971.

[6]马克思恩格斯全集:第33卷[M].北京:人民出版社,1973.

[7][法]拉法格。回忆马克思[M].北京:人民出版社,1954.

[8]马克思。数学手稿[M].北京:人民出版社,1975.

[9]马克思数学手稿[J].北京大学学报专刊,1974.

[10]马克思恩格斯全集:第35卷[M].北京:人民出版社,1971.

[11]马克思恩格斯全集:第20卷[M].北京:人民出版社,1971.

[12]恩格斯。反杜林论[M].北京:人民出版社,1971.

[13]马克思恩格斯全集:第36卷[M].北京:人民出版社,1975.

相关推荐

热门文档

48 908326