首页 > 学习资料 > 小学教案 >

小学数学《比的意义》教案精编4篇

网友发表时间 249906

【阅读指引】阿拉题库网友为您分享整理的“小学数学《比的意义》教案精编4篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

比的意义教案1

教学内容:

书第68-69页例1、例2,试一试、练一练和练习十三的1―5题。

教学目标:

1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

教学重点:

理解比的意义。

教学难点:

理解比与分数、除法的关系。

教学准备:

多媒体课件。

教学过程:

一、谈话导入

1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)

2、教师根据学生的回答进行引发:对,生活中也有“比”,比如一场足球赛的比分是2∶0,它与数学上的“比”一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?

二、教学例1

(一)、呈现例1:

1、利用旧知进行比较:

(1)图中提供了2个数量:2杯果汁和3杯牛奶。根据这两个数量,我们怎样来对果汁和牛奶的杯数进行比较?(根据学生回答,教师整理板书:)

相差关系{牛奶比果汁多1杯倍数关系{果汁的杯数相当于牛奶的2/3

果汁比牛奶少1杯牛奶的杯数相当于果汁的3/2

(2)小结:同学们,我们已经知道两个数量相比较,既可以用减法比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。今天我们认识的比就是专门对这后一种关系进行的研究。

2、“比”的教学:

(1)(指板书:)“果汁的杯数相当于牛奶的2/3”。我们还可以说成“果汁与牛奶杯数的比是2比3(出示)”。想一想,“牛奶的杯数相当于果汁的3/2”。还可以怎样说?(出示:牛奶与果汁杯数的比是3比2。)

3、“比”的读写:

(1)师介绍:2比3怎么写呢?我们一起来看:2比3记作2∶3(板书:2∶3,先写2,再在中间写上两个小圆点,读作“比”,注意与语文中的“冒号”不同,最后写3。一起来写一写,读一读。)

(2)指导学生写:3比2怎么写呢?谁来写一写?

(3)介绍名称:刚才我们写在中间的两个小圆点(∶)是比号(板书:比号),比号前面的数叫做比的前项,比号后面的数叫做比的后项。(板书:前项

后项)

(4)谁来说一说:2∶3这个比中,比的前项是几?比的后项是几?在3∶2这个比中,2是比的什么?3是比的什么?

4、比是有序概念

(1)同学们看一看,刚才的比的前项是2,这儿的2怎么又是比的后项了呢?

(2)对!颠倒两个数量的位置,就会得出另一个比,它的意义也就不同。因此大家在叙述的时候,一定要说清楚是哪个数量与哪个数量在比,不可颠倒顺序。

(二)、完成试一试

(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?

(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?

(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)

三、教学例2

(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。

1、想一想,我们怎样求两人的速度?

2、2、学生计算答案,汇报填表。

3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)

4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)

(二)、理解比的意义

1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比与什么有关?两个数的比表示什么呢?(板书:两个数的比两个数相除)

2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)

(三)、认识“比值”、及与“比”的区别:

1、在900∶15这个比中,比的前项是几?后项是几?比的前项除以后项的商是几?我们把比的前项除以后项所得的商叫做比值。算算900∶15这个比的比值是几?

2、想一想,900∶20这个比的比值是多少?这两个比值60、45也就表示什么?

3、你能说出例1中的各个比的比值分别是多少吗?

4、讨论:同学们觉得比与比值的区别在哪里?

(比表示两个数相除的`一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)

(四)、“试一试”

1、完成“试一试”:(学生独立完成,指名板演)

2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)

(五)、比、除法和分数的关系

1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)

相互关系区别

比前项比号(:)后项比值

除法

分数

2、比的后项为什么不能是0?

四、巩固练习

1、完成“练一练”的1、2、3小题。

2、判断题。

(1)3/4只能读作四分之三。()

(2)比的后项不能是零。()

(3)可可的身高是1米,她爸爸的身高是178厘米,可可和她爸爸身高的比是1∶178。()

3、完成练习十三的第3、4题。

4、糖水的甜度

(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)

你知道哪一杯水更甜吗?为什么?

(2)(出示第三杯糖水,标出糖4克,水100克。)

你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?

(3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?

5、知识介绍:

同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”

五、总结:

今天我们学习了什么?你们有什么收获吗?还有什么问题吗?

六、布置作业:

P72练习十三的1、2、3、5

板书设计

相差关系{牛奶比果汁多1杯倍数关系{果汁的杯数相当于牛奶的2/3

果汁比牛奶少1杯牛奶的杯数相当于果汁的3/2

2比3记作2∶3分数形式

比的意义优秀教学设计2

教材简析:

这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:

(1)比值的表示法,通常用分数表示,也可以用小数表示,有的是用整数表示。

(2)比的后项不能是0。

教学内容:

苏教版九年义务教育六年制小学数学第十一册第52~53页比的意义。

教学对象分析:

学生是在学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行学习的。高年级学生具有一定的阅读、理解能力和自学能力,所以在教学时,可组织学生以小组为单位进行研究、探索、讨论、总结,培养学生的创新意识和自主学习能力。

教学目标:

1、理解并掌握比的意义,会正确读写比。

2、记住比各部分的名称,并会正确求比值。

3、理解并灵活掌握比与分数、除法之间的联系,明确比的后项不能是零的道理,同时懂得事物之间是相互联系的。

4、通过主动发现的小组合作学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力。

5、养成认真观察、积极思考的良好学习习惯。

教学重点:

理解和运用比的意义及比与除法、分数的联系。

教学难点:

理解比的意义。

教学媒体:

电脑课件、实物投影

教学过程:

一、创设情景,激发兴趣

1、引入:同学们,2008年的北京将要举办什么盛会啊?(北京奥运会),在上届的雅典奥运会上中国代表团取得了非常好的成绩,那么关于奥运会你都知道些什么呢?(学生可以畅所欲言),(播放奥运会的相关资料)在学生说出的资料中选出中国金牌数和俄罗斯金牌数:中国获得金牌32块。俄罗斯27块。

你能列出算式表示中国与俄罗斯所得金牌块数之间的关系吗?(这里可能有学生列加减法,也可能会有除法。选出除法算式分析)

32÷27表示什么意思?(中国得的金牌是俄罗斯的几倍)

27÷32表示什么意思?(俄罗斯得的金牌是的中国的几分之几)

2、联系奥运,分析题目.

在奥运会上,你认为我国的哪块金牌的分量最重?(学生畅所欲言)如果没有人说刘翔,教师就稍微引一下

新科110米栏奥运冠军刘翔用沉甸甸的金牌让轻视黄种人的人闭上了嘴巴,他为中国夺得了有史以来中国在田径短跑项目上的第一块金牌,下面我们就共同回顾一下刘翔的夺冠历程(播放刘翔夺冠视频)。

看了这一段内容我们都非常的激动,为我们是中国人而感到骄傲和自豪。那你知道刘翔的夺冠成绩是多少吗?()

那你知道他的速度到底有多快吗?

如果我要你们列式来求该怎么求呢?(110÷)你是根据什么来列式的?(路程÷时间=速度)

看完奥运,我们再来看看我们学校的事情

3、先来做一个小游戏:请栾人璇你们这组同学起立。请其他同学数数他们组女生几人,男生几人?你能用什么式子表示他们组女生人数和男生人数之间的关系?(4÷3和3÷4,分别问学生这两个算式分别表示什么意思?)比的意义教学设计相关内容:分数除法(第5课时)六(下)第一单元比较正数和负数的大小圆柱的表面积练习题分数除法的意义和分数除以整数稍复杂的求一个数的几分之几是多少的应用题《折扣》教案六上综合应用:确定起跑线分数应用题的整理和复习查看更多>>小学六年级数学教案

4、学校用150元买来3个小足球,每个小足球多少元?

(请学生自己读题,说说每道题求的是什么?数量关系是什么?怎样列式?

学生读题回答,教师板书(总价÷数量=单价150÷3)

3、揭示课题:这些题都是用除法算式来表示两种数量的关系的,在日常生活、生产和实验中,常常要对两种数量进行比较,今天我们就来学习一种新的对两个数量进行比较的方法——比。(板书:比)研究比的意义。(板书完整课题)

[设计意图:问题情境的创设主要立足于学生的现实生活,贴近学生的认知背景,设计形象而又蕴含一定的与数学问题有关的情境,在开放性问题情境中,学生思维活跃,并积极主动地从多角度去思考问题,变“让我学”为“我要学”。]

二、自主探究,合作交流

1、比的意义。

(1)那么在刚才的例子当中中国得的金牌是俄罗斯的几倍,用32÷27,现在我们就可以说成中国得的金牌与俄罗斯得的金牌数的比是32比27。

那俄罗斯得的金牌是的中国的几分之几可以怎么说呢?(学生试着说:俄罗斯得的金牌数和中国得的金牌数的比是27比32)

(2)小结:通过以上的学习后,我们知道,谁是谁的几倍或谁是谁的几分之几,又可以说成谁和谁的比。

质疑:可老师还有个疑问,以上两道题都是对中国得的金牌数和俄罗斯得的金牌数进行比较的,为什么一个是32比27,一个是27比32?

引导得出:两个数量进行比较要弄清谁和谁比,谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。

(2)同学们真聪明,那么你们能像这样把其他的除法算式都变一个说法吗?先同座位两个人互相说说看。(学生同座位两个人说)

都说完了,那谁愿意站起来说一说呢?

(女生人数是男生人数的几倍可以说成女生人数和男生人数的比是4比3)就这样依次说完。

那路程除以时间等于速度可以怎么说啊?(速度可以说成是路程与时间的比)

那单价呢?可以怎么说啊?(单价是总价和数量的比)

在我们常用的数量关系中还有工作效率=工作总量÷工作时间

这里的工作效率还可以怎么说呢?(工作效率就是工作总量个工作时间的比)

[设计意图:考虑到学生对“比”缺乏感性上认知,所以以上的例子采用“导、拨”的方法,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的方法,即谁是谁的几分之倍或几分之几,又可以说成谁和谁的比。既节省了教学时间,也使学生初步理解了比的`意义,充分发挥了教师的引导作用。]

(3)从上面的例子可以看出,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?请同学们结合板书同位讨论一下。(前后四人讨论)

汇报,板书:两个数相除又叫做两个数的比。(齐读)

你们能不能自己举一个用比表示两数关系的例子?先说原题再把它改编成比的形式(学生自主举例,四人讨论汇报,教师板书)

[设计意图:通过以上例子的学习,使学生由形象感知过渡到建立表象的层面。遵循儿童的认知规律,用同桌之间互相讨论的方式,抽象概括出“比的意义”,同时充分发挥了学生的主体作用。]

(4)练习题:填空。

有5个红球和10个白球,白球和红球个数的比是()比(),红球和白球个数的比是()比()。比的意义教学设计相关内容:分数除法(第5课时)六(下)第一单元比较正数和负数的大小圆柱的表面积练习题分数除法的意义和分数除以整数稍复杂的求一个数的几分之几是多少的应用题《折扣》教案六上综合应用:确定起跑线分数应用题的整理和复习查看更多>>小学六年级数学教案

[设计意图:这是一组对应练习,旨在强化学生对比的意义的初步理解。]

2、比的读写法、各部分名称、求比值的方法以及与除法、分数的联系。

(1)看书自学,小组讨论交流:通过刚才的学习,我们理解了比的意义,在课本的52~53页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家以四人小组为单位进行自学,可以在小组里讨论,然后汇报一下你学会了什么?还有什么疑问?开始吧!

[设计意图:自学课本也是学生探索问题,解决问题的重要途径。根据高年级学生的阅读、理解能力,结合教材的具体内容,充分相信学生,组织学生以小组为单位进行研究、探索、讨论、总结,有利于培养学生的创新意识和实践能力,有利于学生思维发展,有利于培养学生间的合作精神。]

(2)汇报。

1:我学会了比的写法,3比4记作3∶4。(让学生板演)

问:这个“∶”叫做什么呢?谁愿意给它起个名字?(强调:写“∶”应该注意上下对齐,点要圆一点,它不同于冒号。)那么4比3、110比又记作什么?(指名板演,其他同学写在练习本上)3∶44∶3110∶又怎样读呢?

思考:刚才大家学会了用“∶”的形式来写出两个数的比,除了这种形式,还可以写成什么形式呢?(指名板演)读作什么?还可以读作二分之三吗?为什么?(把3∶4改写成分数形式的比,并齐读。)

[设计意图:教材无非是个例子,站在培养学生创新意识的高度重新组合处理教材内容。学生汇报过程中,由教师引导,把“比号”“分数形式的比”前移,这样既符合学生的认知规律,又使课堂教学省时高效。]

2:我学会了比的各部分名称。(结合3∶4来说明)

如果告诉你“男生人数和女生人数的比是3:4”,你能想到些什么?(学生畅所欲言)

3:我学会了什么叫做比值。(比的前项除以后项所得的商叫做比值)

问:那么怎样求比值呢?(前项除以后项的商)

练习题:(课件出示)求出下面各比的比值。3∶∶∶∶1/5

想:比值通常可以是什么数?

[设计意图:比值不同的四个比的举例,既加深了学生对比值意义的理解,又强化了学生对“比”和“比值”的区别。]

4:两数相除又叫做两个数比,看来比和除法之间有着一定的联

系,我们以前也学习过除法和分数的联系,那么比和分数之间是不是也有联系呢?(是)。

出示思考题:比与除法、分数有哪些联系?比与除法、分数又有什么区别?(以前后四人为小组,讨论填写)

相互关系区别比前项:(比号)后项比值一种关系除法被除数÷(除号)除数商一种运算分数分子—(分数线)分母分数值一种数

设计意图:以往教学比与除法、分数三者的联系,主要以教师的讲授为主,费时费力,教学效果也不是最佳的。所以要突破传统的教学模式,不讲授,让学生借助教材、板书、计算机课件的有机结合,总结出三者之间的联系,实现了自主学习。

5:我还知道比的后项不能为“0”。

问:为什么呢?(引导学生从不同角度说明)

三、多层练习,巩固新知

《比的意义》教学设计3

教学目标

1、理解比的意义,会读、写比;认识比的各部分名称;掌握求比值的方法,能准确地求出比值。

2、理解比、分数、除法之间的关系,通过观察,让学生懂得事物之间是相互联系的。

教学重点和难点

掌握比的意义,建立比的概念,能准确地求出比值。

教学过程

老师:在日常生活中,我们常常把两个数量进行比较,通常怎么比较?(比较两个数量之间相差关系用减法,比较两个数量之间的倍数关系用除法。)

导入:今天我们借助于除法来学习两个数量进行比较的另一种表示方法。

(一)准备题

(事先板书)口头列式解答。

1、一面红旗,长3分米,宽2分米,长是宽的几倍?宽是长的几分之几?

2、一辆汽车,2小时行驶100千米,每小时行驶多少千米?

板书: 1002=50(千米)

师:观察上面的两道题,它们有什么共同特点?(都用除法)

(二)讲授新课:比的意义

1、观察练习1。

问:32表示什么?(3是2的几倍。)

谁和谁比?(长和宽比。)

23表示什么?(2是3的几分之几。)

谁和谁比?(宽和长比。)

师:无论是长除以宽,还是宽除以长,比较结果都表示长和宽之间的倍数关系,这时也可以把两个数量之间的关系说成是两个数量的比。

板书:长和宽的比是3比2。宽和长的比是2比3。

也就是说,32可以说成3比2,23也可以说成2比3。

提问:3分米、2分米都表示什么?(长度)

师小结:3分米、2分米都表示长度,它们是同一种量,我们就说这两个数量的比是同类量的比。

2、观察练习2。

提问:求的是什么?(速度)谁和谁进行比较?(路程和时间)谁除以谁?

师:我们也可以用比来表示路程和时间的关系。(放手让学生讨论)路程除以时间可以说成什么?(可以说成路程和时间的比,即 100∶2可以说成 100比2。)

路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的量:速度。)

3、归纳总结。

师:从上面例子可以看出,表示两个数之间的关系可以用什么方法?(用红笔画线,标上除法。)当用除法表示两个数量关系时,我们又可以说成什么?(用红笔画线,标上比。)什么叫做比?(学生讨论后,老师归纳并板书。)

板书:两个数相除又叫做这两个数的比。

4、练一练。(投影)

(1)书法小组有男生6人,女生5人,男女生人数的比是( )比( ),女生人数和男生人数的比是( )比( )。

(2)小红3小时走11千米,小红所行路程和时间的比是( )比( ),这个比表示( )。

提问:写比时要注意什么?(要看清谁比谁,按顺序写。)不按顺序写会出现什么结果?(改变比的意义。)

(三)比的写法和各部分名称

师:两个数相除又叫做两个数的比,说法变了,各部分名称和表现形式都应发生变化。(可让学生看书自学,老师根据学生的回答板书。)

3比2 记作3∶2

2比3 记作2∶3

100比5 记作100∶5

∶叫做比号,读做比。比号前面的数叫做比的前项,比号后面的数叫做比的'后项。用比的前项除以比的后项,所得的商叫做比值。

提问:比的前后两项能随便交换位置吗?为什么?(交换了位置,比的意义就变了。)

比值可以是哪些数?(分数、小数、整数)

练习:你会求比值吗?(板书)

100∶2=1002=50

(老师说明:求比值和解答应用题不同,不写单位名称。)

(四)比、除法、分数之间的关系

师:两个数相除又叫做两个数的比,比和除法到底有什么关系?

学生讨论,老师出示投影。

生:比的前项相当于除法中的被除数,比号相当于除号,比的后项相当于除数,比值相当于商。

师:为什么要用相当于这个词?因为它们之间有联系还有区别,除法是一种运算,比则表示两个数之间相除的关系,所以比同除法的关系只能是相当于的关系。

提问:在除法中,为了使除法有意义,提出了什么要求?(除数不能是0[]。)那比的后项可以是零吗?(不可以)

师:比还有一种表示方法,就是写成分数形式。(板书)3∶2可写成

成比值又可以看成比,做比时读作2比3,做比值读作三分之二。其它几个比做比值时必须化成带分数或整数。

提问:比和分数有什么关系?

生:比的前项相当于分子,比号相当于分数线,比的后项相当于分母,比值相当于分数值。(老师按学生回答,填写投影片)

师:分数是一个数,所以比同分数也是相当于的关系。

(五)反馈练习

1、第56页的做一做,学生动笔在本上做。

2、(投影)把下面的比写成分数形式。

3、选择答案。

航空模型小组8个人共做了27个航空模型,这个小组所做的模型总数和人数的比是

4、判断正误:(举反馈牌)

(1)大卡车载重量是5吨,小卡车载重量是2吨,大小卡车载重量的

(2)机床上有一个齿轮,20秒转49周,这个齿轮转动的周数和时间的比是20∶49。

师:写比要注意比的顺序,前、后项不能颠倒。

(六)课堂总结

今天我们学习的是书上第55页至56页的知识。(让学生打开书看)你都学会了哪些知识?

(七)布置作业

(略)

课堂教学设计说明

本节课是在学生学过分数与除法的关系、分数乘除法的意义和计算方法以及分数乘除法应用题的基础上进行的,因此本课从除法应用题入手,通过复习同类量相除,不同类量相除的内容,引出比的概念,培养了知识迁移能力。在理解比的意义过程中,让学生通过观察、分析归纳出比的意义,体现了概念教学的特点,使学生不仅获取了新知识,也培养了学生自学能力和分析归纳能力。课后练习,重在加强学生对概念的理解,及时反馈了学生掌握概念的情况。

比的意义教案4

教学内容

课本第49页例3课堂活动第2题及练习十三。

教学目标

1、进一步认识小数及小数的计数单位,让学生会读小数。

2、进一步体会小数在日常生活中的作用。

3、通过对现实生活中一些自然、人文景观的数据的读写,受到爱国主义的熏陶。

教学重点

进一步认识小数及小数的。计数单位;会读、写小数。

教学难点

小数部分的读法、写法。

教学过程

一、复习引入

教师:上节课我们认识了小数,什么叫小数呢?一位小数表示几分之几?两位小数呢?三位小数呢?学生回忆整数读法并在全班交流。

揭示课题:同学们你们会读小数吗?今天我们就来探讨小数的读法。

二、自由讨论、学习新知

1、教师用卡片出示例

2、学生先自由读一读,再抽读。

3、议一议:读小数时要注意什么?

4、教师根据学生的回答再归纳小结小数的读法,强调整数部分与小数部分读法的不同。

三、巩固新知

1、同桌相互读数。(课堂活动第2题)

2、练习十三第4题。

让学生独立看题后,再把自己从题中获得的信息告诉同桌或全班同学。

3、练习十三第5题。

教师先引导学生认识表格,并向学生简介表中一些名称的含义。

再让学生看表分组接龙游戏。

4、练习十三第6题学生自己看图写数,三人板演,集体订正。

5、指导练习。

(1)第9题。

教师:与之间相差多少?让学生数一数,与之间平均分成了多少份?从而认识到把平均分成10份,即比更小的计数单位是。因此,第1小题应该填两位小数。

同理,比更小的计数单位是,第2小题应该填三位小数。

填完后,让学生说一说是怎样想的?

(2)第10题。

学生自己独立完成。明白每个小数位上的数代表着什么。

四、拓展提高

1、练习十三第1、2、3、7、8题。

让学生独立完成,集体订正。

2、思考题:第12题用2,5和3个0写小数。

(1)1个0都不读出来的一位小数。

(2)3个0都读出来的小数。

让学生独立思考,完成后读一读。

3、课后作业:第11题和第13题。

回家请父母帮忙,与父母共同完成。

五、课后小结

今天学习了什么?你有哪些收获?

板书设计:

小数的读写

读作:零点七

读作:零点一九

读作:三点零八

读作:一百零三点五零三

读整数部分时按整数读法来读,读小数部分时顺次读出每一个数位上的数字。

相关推荐

热门文档

16 249906