首页 > 学习资料 > 教案大全 >

比的意义教案【精编4篇】

网友发表时间 208888

【阅读指引】阿拉题库网友为您分享整理的“比的意义教案【精编4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

《比的意义》教学设计【第一篇】

教学目标:

1、理解比的意义,掌握比的读法和写法,认识比的各部分名称。

2、掌握求比值的方法,并能正确求出比的比值。

3、培养学生抽象、概括能力。

教学重点:

理解比的意义,掌握求比值的方法。

教学难点:

理解比的意义,建立比的概 念

教学过程:

活动一:

同学们,在每个星期一的早晨我们学校都会举行一种什么仪式?我们学校为什么要经常举行这种升旗活动呢?其实在我们的国旗里面还隐藏着许多有趣的数学问题呢?今天,我们就一起去探究一下。

课件出示问题:一面红旗,长3分米,宽2分米,谁能用算式来表示长和宽的关系?

在学生的回答中,老师选取两个答案:3÷2表示长是宽的几倍?和2÷3表示宽是长的几分之几?告诉学生这种关系除了用除法算式表示外,还可以用另外一种方式来表达,那就是——比。引出本节课内容“比的意义”。

活动二;

(一)探究同类量的比;外,还可以表示长和宽的比为3比2。让学生依次说出2÷3还可以表示什么意思?

同学们,刚才我们都是把长和宽进行了比较,为什么一个是3比2,一个是2比3,让学生说说从中有什么收获?

让学生举出生活中这样的例子。

(二)探究非同类量的比

课件出示书中的第二个红点问题。

让学生用算式表示如何求速度?通过公式来列算式,引导学生写出路程和时间的比是多少?

再让学生举出生活中这样地例子。

活动三:

仔细观察上面的例子,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?(学生讨论交流)

通过刚才的学习,我们理解了比的意义,在课本的78~79页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家对照老师所给的问题,以四人小组为单位进行自学,可以在小组里讨论,然后汇报交流。

课件出示问题:

⑴、比的读、写法?比都有哪些表示形式?

⑵、比的各部分名称?如何求比值?

⑶、比和除法、分数有哪些联系?

⑷、比的后项能不能是0?为什么?

引导学生起来交流,在学生交流的基础上有针对性的板书。

活动四:

1、填一填。

⑴、把2克盐溶解在100克水中,盐和水的比的( )。盐和盐水的比是( )。

⑵、一辆汽车来运货,一共运了5次,共运了20吨,写出运的吨数和次数比是( ),比值是( )。

活动五;

学生谈收获。

比的意义教案【第二篇】

课题:

培养审美的眼睛——美术鉴赏及其意义

课时:

一课时

课型:

理论欣赏课 高中美术教案:培养审美的眼睛——美术鉴赏及其意义

教材分析:

本课高中美术教案:培养审美的眼睛——美术鉴赏及其意义是关于美术欣赏

理论知识的第一课。美术欣赏,是欣赏者对美术作品进行知觉、感受、体会和解

释、评价的复杂的心理活动过程,在欣赏过程中,欣赏者的欣赏能力和知识素养

往往直接影响到欣赏活动的质量,而掌握美术理论知识能有效的提高欣赏质量。

教学目标:

本课作为高中整个美术鉴赏教学的开篇,对后面的教学具有指导意义。通过本课的教学,使学生初步了解什么是美术鉴赏、美术鉴赏的一般过程和特征,以及学习美术鉴赏有什么意义,由此掌握美术鉴赏的方法,培养学生“审美的眼睛”。

教学过程:

本课主要包括四个部分:

第一部分从现代人的全面发展出发,指出培养审美的眼睛是现代人全面发展的需要,而美术鉴赏则是培养审美的眼睛的必要途径。

第二部分“什么是美术鉴赏”,先从对身处天安门广场的感受和对天安门的认知中,说明美术鉴赏并不神秘,而是与我们的生活息息相关,并由此引出美术鉴赏的问题。然后再从具体的美术作品入手,以中国唐代画家的中国画《捣练图》和法国画家米勒的油画《拾穗》为例,简单介绍了美术鉴赏的一般过程或方法,由此导入,进入概念分析,阐明什么是美术鉴赏、其特性以及在美术鉴赏中被动接受与主动参与的关系等。这里没有涉及什么是美术或什么是艺术的问题,而是直接谈什么是美术鉴赏,这是因为美术或艺术的概念本身就十分复杂,它将涉及到更为复杂的专业知识,这对于学生的理解来说是困难的,也将影响本课的主题。更由于当代艺术已模糊了艺术与非艺术、艺术与生活的界限,“什么是艺术”在学术界也是一个正处于争论之中的问题,对于那些还没有定论的问题我们只好在教学中暂时悬置起来。

第三部分“美术作品是如何分门别类的”,简单介绍了美术的基本分类方法,这里只列出了一个简略的艺术分类,学生了解这些就可以了。但教师还应明白,在美术的六大分类——绘画、雕塑、建筑、设计、书法、摄影中,还可以按照其材料、功能、题材、内容等作更细致的划分。

第四部分“美术鉴赏有什么意义”,以美术的三大功能为基础,说明美术鉴赏不仅是对知识的学习,更重要的'是对培养学生认识世界的能力、审美的眼睛和健康的审美情趣以及未来的人生发展,都具有十分重要的意义。

教学的重点与难点:

本课教学的重点在于培养审美的眼睛,掌握美术鉴赏的一般方法,认识美术鉴赏对于个人未来人生发展的重要价值和意义。

本课教学难点,主要是如何结合实例讲清美术的主要分类方法、美术鉴赏的概念和美术鉴赏的一般过程或方法。

课堂总结:

对于美术鉴赏是与我们的生活密切相关的,并对我们的生活中起着很重要的作用,通过对本课的学习,要学习自己通过对美术鉴赏的过程来学习及鉴赏。

作业布置:

选取一件自己喜欢的美术名作,搜集资料并作出总结,谈谈自己的想法和感受。

《比的意义》教学设计【第三篇】

教材简析:

这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:

(1)比值的表示法,通常用分数表示,也可以用小数表示,有的是用整数表示。

(2)比的后项不能是0。

教学内容:

苏教版九年义务教育六年制小学数学第十一册第52~53页比的意义。

教学对象分析:

学生是在学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行学习的。高年级学生具有一定的阅读、理解能力和自学能力,所以在教学时,可组织学生以小组为单位进行研究、探索、讨论、总结,培养学生的创新意识和自主学习能力。

教学目标:

1、理解并掌握比的意义,会正确读写比。

2、记住比各部分的名称,并会正确求比值。

3、理解并灵活掌握比与分数、除法之间的联系,明确比的后项不能是零的道理,同时懂得事物之间是相互联系的。

4、通过主动发现的小组合作学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力。

5、养成认真观察、积极思考的良好学习习惯。

教学重点:

理解和运用比的意义及比与除法、分数的联系。

教学难点:

理解比的意义。

教学媒体:

电脑课件、实物投影

教学过程:

一、创设情景,激发兴趣

1、引入:同学们,2008年的北京将要举办什么盛会啊?(北京奥运会),在上届的雅典奥运会上中国代表团取得了非常好的成绩,那么关于奥运会你都知道些什么呢?(学生可以畅所欲言),(播放奥运会的相关资料)在学生说出的资料中选出中国金牌数和俄罗斯金牌数:中国获得金牌32块。俄罗斯27块。

你能列出算式表示中国与俄罗斯所得金牌块数之间的关系吗?(这里可能有学生列加减法,也可能会有除法。选出除法算式分析)

32÷27表示什么意思?(中国得的金牌是俄罗斯的几倍)

27÷32表示什么意思?(俄罗斯得的金牌是的中国的几分之几)

2、联系奥运,分析题目.

在奥运会上,你认为我国的哪块金牌的分量最重?(学生畅所欲言)如果没有人说刘翔,教师就稍微引一下新科110米栏奥运冠军刘翔用沉甸甸的金牌让轻视黄种人的人闭上了嘴巴,他为中国夺得了有史以来中国在田径短跑项目上的第一块金牌,下面我们就共同回顾一下刘翔的夺冠历程(播放刘翔夺冠视频)。

看了这一段内容我们都非常的激动,为我们是中国人而感到骄傲和自豪。那你知道刘翔的夺冠成绩是多少吗?

那你知道他的速度到底有多快吗?

如果我要你们列式来求该怎么求呢?(110÷)你是根据什么来列式的?(路程÷时间=速度)

看完奥运,我们再来看看我们学校的事情

3、先来做一个小游戏:请栾人璇你们这组同学起立。请其他同学数数他们组女生几人,男生几人?你能用什么式子表示他们组女生人数和男生人数之间的关系?(4÷3和3÷4,分别问学生这两个算式分别表示什么意思?)

4、学校用150元买来3个小足球,每个小足球多少元?

(请学生自己读题,说说每道题求的是什么?数量关系是什么?怎样列式?

学生读题回答,教师板书(总价÷数量=单价150÷3)

3、揭示课题:这些题都是用除法算式来表示两种数量的关系的,在日常生活、生产和实验中,常常要对两种数量进行比较,今天我们就来学习一种新的对两个数量进行比较的方法——比。(板书:比)研究比的意义。(板书完整课题)

[设计意图:问题情境的创设主要立足于学生的现实生活,贴近学生的认知背景,设计形象而又蕴含一定的与数学问题有关的情境,在开放性问题情境中,学生思维活跃,并积极主动地从多角度去思考问题,变“让我学”为“我要学”。]

二、自主探究,合作交流

1、比的意义。

(1)那么在刚才的例子当中中国得的金牌是俄罗斯的几倍,用32÷27,现在我们就可以说成中国得的金牌与俄罗斯得的金牌数的比是32比27。

那俄罗斯得的金牌是的中国的几分之几可以怎么说呢?(学生试着说:俄罗斯得的金牌数和中国得的金牌数的比是27比32)

(2)小结:通过以上的学习后,我们知道,谁是谁的几倍或谁是谁的几分之几,又可以说成谁和谁的比。

质疑:可老师还有个疑问,以上两道题都是对中国得的金牌数和俄罗斯得的金牌数进行比较的,为什么一个是32比27,一个是27比32?

引导得出:两个数量进行比较要弄清谁和谁比,谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。

(2)同学们真聪明,那么你们能像这样把其他的除法算式都变一个说法吗?先同座位两个人互相说说看。(学生同座位两个人说)

都说完了,那谁愿意站起来说一说呢?

(女生人数是男生人数的几倍可以说成女生人数和男生人数的比是4比3)就这样依次说完。

那路程除以时间等于速度可以怎么说啊?(速度可以说成是路程与时间的比)

那单价呢?可以怎么说啊?(单价是总价和数量的比)

在我们常用的数量关系中还有工作效率=工作总量÷工作时间

这里的工作效率还可以怎么说呢?(工作效率就是工作总量个工作时间的比)

[设计意图:考虑到学生对“比”缺乏感性上认知,所以以上的例子采用“导、拨”的方法,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的方法,即谁是谁的几分之倍或几分之几,又可以说成谁和谁的比。既节省了教学时间,也使学生初步理解了比的意义,充分发挥了教师的引导作用。]

(3)从上面的例子可以看出,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?请同学们结合板书同位讨论一下。(前后四人讨论)

汇报,板书:两个数相除又叫做两个数的比。(齐读)

你们能不能自己举一个用比表示两数关系的例子?先说原题再把它改编成比的形式(学生自主举例,四人讨论汇报,教师板书)

[设计意图:通过以上例子的学习,使学生由形象感知过渡到建立表象的层面。遵循儿童的认知规律,用同桌之间互相讨论的方式,抽象概括出“比的意义”,同时充分发挥了学生的主体作用。]

(4)练习题:填空。

有5个红球和10个白球,白球和红球个数的比是()比(),红球和白球个数的比是()比()。

[设计意图:这是一组对应练习,旨在强化学生对比的意义的初步理解。]

2、比的读写法、各部分名称、求比值的方法以及与除法、分数的联系。

(1)看书自学,小组讨论交流:通过刚才的学习,我们理解了比的意义,在课本的52~53页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家以四人小组为单位进行自学,可以在小组里讨论,然后汇报一下你学会了什么?还有什么疑问?开始吧!

[设计意图:自学课本也是学生探索问题,解决问题的重要途径。根据高年级学生的阅读、理解能力,结合教材的具体内容,充分相信学生,组织学生以小组为单位进行研究、探索、讨论、总结,有利于培养学生的创新意识和实践能力,有利于学生思维发展,有利于培养学生间的合作精神。]

(2)汇报。

1:我学会了比的写法,3比4记作3∶4(让学生板演)

思考:刚才大家学会了用“∶”的形式来写出两个数的比,除了这种形式,还可以写成什么形式呢?(指名板演)读作什么?还可以读作二分之三吗?为什么?(把3∶4改写成分数形式的比,并齐读。)

[设计意图:教材无非是个例子,站在培养学生创新意识的高度重新组合处理教材内容。学生汇报过程中,由教师引导,把“比号”“分数形式的比”前移,这样既符合学生的认知规律,又使课堂教学省时高效。]

2:我学会了比的各部分名称。(结合3∶4来说明)

如果告诉你“男生人数和女生人数的比是3:4”,你能想到些什么?(学生畅所欲言)

3:我学会了什么叫做比值。(比的前项除以后项所得的商叫做比值)

问:那么怎样求比值呢?(前项除以后项的商)

练习题:(课件出示)求出下面各比的比值。3∶4 ∶ 8∶4 ∶1/5

想:比值通常可以是什么数?

[设计意图:比值不同的四个比的举例,既加深了学生对比值意义的理解,又强化了学生对“比”和“比值”的区别。]

4:两数相除又叫做两个数比,看来比和除法之间有着一定的联

系,我们以前也学习过除法和分数的联系,那么比和分数之间是不是也有联系呢?(是)。

出示思考题:比与除法、分数有哪些联系?比与除法、分数又有什么区别?(以前后四人为小组,讨论填写)

相互关系区别比前项:(比号)后项比值一种关系除法被除数÷(除号)除数商一种运算分数分子—(分数线)分母分数值一种数

设计意图:以往教学比与除法、分数三者的联系,主要以教师的讲授为主,费时费力,教学效果也不是最佳的。所以要突破传统的教学模式,不讲授,让学生借助教材、板书、计算机课件的有机结合,总结出三者之间的联系,实现了自主学习。

5:我还知道比的后项不能为“0”。

问:为什么呢?(引导学生从不同角度说明)

三、多层练习,巩固新知

引导过程【第四篇】

㈠引导探索,使学生由比较两个同类量之间的倍数关系,引出用比表示的方法。

谈话:同学们,有谁知道,今年的雅典奥运会上,中国代表团共获得多少枚金牌?中华人民共和国的国歌在雅典奥运会上多少次庄严奏起,中华人民共和国的国旗多少次在雅典上空率先升起。“五星红旗啊,我们为你自豪”。

同学们,你知道国旗的制作标准吗?下面我们就来计算一下。

投影:这面国旗,长是3分米,宽是2分米。

⒈引导再学。出示初学思考题:

长是宽的几倍,还可以把长和宽的关系说成什么?

宽是长的几分之几,还可以把宽和长的关系说成什么?

⒉讨论回答思考题

师:长是宽的几倍,还可以把长和宽的关系说成什么?

生:长是宽的3/2倍,我们还可以把长和宽的关系说成-----长和宽的比是3比2。

板书 3÷2=3/2 或 3比2

师:宽是长的几分之几,还可以把宽和长的关系说成什么?

生:宽是长的2/3,我们还可以宽和长的关系说成-----宽和长的比是2比3。

板书 2÷3=2/3 或 2比3

师:由上可知,我们还可以用比来表示长与宽之间的倍数关系。

㈡再次探索用比表示两个不同类量之间的除法关系。

投影:一辆汽车,2小时行驶了100千米。

出示初学思考题,引导再学。

① 题目中有哪几个量?可以求出什么问题?怎样求?

② 这两个量间的关系用比怎样表示?

讨论思考题:

师:路程和时间的关系用比来表示怎么说?

生:汽车所行路程和时间的比是100比2。

板书 100÷2=50 或 路程和时间的比是100比2

师:那么汽车所行时间和路程的关系是什么?能用比表示吗?

引导学生弄清谁与谁比,比的结果、意义不同。

㈢引导归纳比的意义,理解掌握比和分数、除法的关系

学生先阅读课本第62页的内容,再学思考题。

思考题:①比是表示几个量之间的什么关系?什么叫做比?

②比的符号是什么?比的每个部分的名称是什么?

③比和除法有怎样的联系和区别?比和分数呢?

⑴回答思考题①,师即时板书。

生:比是表示两个量之间的相除关系,因此两个数相除又叫做两个数的比。

⑵回答思考题②:

师:除法的运算符号是除号,表示比的符号是什么呢?还有其他的表示方法吗?

生:比的符号是比号,写作“﹕”要写在两个数的'中间。比号前面的数叫比的前项,比号后面的数叫比的后项,比的前项除以后项所得的商叫做比值。

3 比 2记作3﹕2 或3 / 2

板书 3 ﹕ 2 = 3 ÷ 2 =

前项 比号 后项 比值

师:3/2是比的另一种分数形式的写法,仍读作3比2,不能读作二分之三。

⑶回答思考题③:

生答,师填表

除法

被除数

除号

除数

一种运算

前项

比号

后项

比值

两个数的关系

分数

分子

分数线

分母

分数值

一种数

相关推荐

热门文档

20 208888