首页 > 学习资料 > 初中教案 >

八年级下册数学的教案【汇编4篇】

网友发表时间 583100

【前言导读】此篇优秀教案“八年级下册数学的教案【汇编4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

初二下册数学教案【第一篇】

学习目标:

1、巩固对整式乘法法则的理解,会用法则进行计算

2、在学生大量实践的基础上,是学生认识单项式乘以单项式法则是整式乘法的关键,“多乘多”、“单乘多”都转化为单项式相乘。

3、在通过学生练习中,体会运算律是运算的通性,感受转化思想。。

4、进一步培养学生有条理的思考和表达能力。

学习重点:整式乘法的法则运用

学习难点:整式乘法中学生思维能力的培养

学习过程

1、 学习准备

1、 你能写出整式乘法的法则吗?试一试。

2、 谈谈在整式乘法的学习过程中,你有什么收获?有什么不足?

利用课下时间和同学交流一下,能解决吗?

2、 合作探究

1、 练习

(1)(-5a2b)(2 a2bc) (2)(- ax)( - bx3)

(3)(2x104)(6x105) (4) ( x) •2x3 •( -3x2)

2、结合上面练习,谈谈在单项式乘单项式运算中怎样进行计算?要注意些什么?

3、练习

(1)(-3x)(4x2- x+1) (2)(-xy)(2x-5y-1)

(3)(2x+3) (4x+1) (4)(x+1)(x2-2x+3)

4、结合上面练习,体会单项式乘多项式、多项式乘多项式运算中,都是以单项式乘单项式为基础、运用乘法分配律进行计算。

3、 自我测试

1、3x2• (-4xy) •(- xy)=

2、 若(mx3)•(2xn)=-8x18,则m=

3、一个长方体的长、宽、高分别为3x-4,2x和x,它的体积是

4、若m2-2m=1,则2m2-4m+2008的值是

5、解方程:1-(2x+1)(x-2)= x2-(3x-1)(x+3)-11

6、当(x2+mx+8)(x2-3x+n)展开后, 如果不含x2和x3的项,求(-m)3n的值。

7、计算:(y+1)(y2-y+1)+y(1+y)(1-y),其中y=- 。

8、(2009 北京)已知x2-5x=14,(x-1)(2x-1)-(x+1)2+1的值。

9、某公园要建如图所示的形状的草坪(阴影部分),求铺设草坪多少m2?若每平

方米草坪260元,则为修建该草坪需投资多少元?

八年级数学下册教案【第二篇】

教学目标:

1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

4、能利和计算器求一组数据的算术平均数。

教学重点:

体会平均数、中位数、众数在具体情境中的意义和应用。

教学难点:

对于平均数、中位数、众数在不同情境中的应用。

教学方法:

归纳教学法。

教学过程:

一、知识回顾与思考

1、平均数、中位数、众数的概念及举例。

一般地对于n个数X1……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。

如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。

中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

众数就是一组数据中出现次数最多的那个数据。

如3,2,3,5,3,4中3是众数。

2、平均数、中位数和众数的特征:

(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。

(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。

(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

3、算术平均数和加权平均数有什么区别和联系:

算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

4、利用计算器求一组数据的平均数。

利用科学计算器求平均数的方法计算平均数。

二、例题讲解:

某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

三、课堂练习:复习题A组

四、小结:

1、掌握平均数、中位数与众数的概念及计算。

2、理解算术平均数与加权平均数的联系与区别。

五、作业:复习题B组、C组(选做)

初二下册数学教案【第三篇】

一、创设情境 导入新课

1、介绍七巧板

师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?

一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。

2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题)

设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。

二、尝试探索 建立模型

(一)认一认 形成表象

师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗?

不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上)

(二)找一找 感知特征

1、在例题图中找平行四边形

师:老师这有几幅图,你能在这上面找到平行四边形吗?

2、寻找生活中的平行四边形

师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架)

(三)做一做 探究特征

1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗?

2、在小组里交流你是怎么做的并选代表在班级里汇报。

3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)

4、全班交流,师小结平行四边形的。特征。(两组对边分别平行并且相等;对角相等;内角和是360度。)

设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。

(四)练一练 巩固表象

完成想想做做第1、2题

(五)画一画 认识高、底

1、出示例题,你能量出平行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的?

2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。

3、平行四边形的高和底书上是怎么说的呢?(学生看书)

4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)

5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)

6、画高(想想做做第5题)(提醒学生画上直角标记)

三、动手操作 巩固深化

1、完成想想做做第3、4题

第3题:拼一拼、移一移,说说怎样移的?

第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。

2、完成想想做做第6题 (课前做好,课上活动。)

(1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。

(2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了?

(3)得出平行四边形的特性

师再捏住平行四边形的对角向里推。看你发现了什么?

师:三角形具有稳定性,通过刚才的动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形)

(4)特性的应用

师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)

设计意图:

四、畅谈收获 拓展延伸

1、师:今天这节课你有什么收获吗?

2、用你手中的七巧板拼我们学过的图形。

3、寻找平行四边形容易变形的特性在生活中的应用。

设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。

2021年八年级下册最新湘教版数学教案【第四篇】

一、学习目标:1.多项式除以单项式的运算法则及其应用。

2、多项式除以单项式的运算算理。

二、重点难点:

重 点: 多项式除以单项式的运算法则及其应用

难 点: 探索多项式与单项式相除的运算法则的过程

三、合作学习:

(一) 回顾单项式除以单项式法则

(二) 学生动手,探究新课

1、 计算下列各式:

(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

2、 提问:①说说你是怎样计算的 ②还有什么发现吗?

(三) 总结法则

1、 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

2、 本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

随堂练习: 教科书 练习

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行。

E、多项式除以单项式法则

相关推荐

热门文档

17 583100