首页 > 工作范文 > 范文大全 >

勾股定理证明方法【范例4篇】

网友发表时间 464605

【路引】由阿拉题库网美丽的网友为您整理分享的“勾股定理证明方法【范例4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

勾股定理的无字证明【第一篇】

《勾股定理的证明》教学反思

本节课主要通过勾股定理的证明探索,使学生进一步理解和掌握勾股定理。通过利用质疑、拼图观察、思考、猜想、推理论证这一过程,培养学生探求未知数学知识的能力和方法,培养学生求异思维能力、认知能力、观察能力和独立实践能力。学生独立或分组进行拼图实验,教师组织学生在实验过程中发现的有价值的实验结果进行交流和展示。本节课的过程由激趣、质疑、实验、求异、探索、交流、延伸组成。

本节课的成功之处:

1、创设情景,实例导入,激发学生的学习热情。

2、由于实现了教师角色的转变,教法的创新,师生的平等,气氛的活跃,学生积极参加。

3、面向全体学生,以人为本的教育理念落实到位。整节课都是学生自主实验、自主探索,自主完成由形到数的转化。学生勇于上讲台展示研究成果,教师只是起到组织、引导作用。

4、通过学生动手实验,上台发言,展示成果,体验了成功的喜悦。学生的自信心得到培养,个性得到张扬。通过当场展示,让学生体会到动手实践在解决数学问题中的重要性,同时也让学生体会到用面积来验证公式的直观性、普遍性。

5、学生的研究成果极大地丰富了学生对勾股定理的证明的认识,学生从中获得利用已知的知识探求数学知识的能力和方法。这对学生今后的学习和将来的发展是大有裨益的。同时验证勾股定理的证明的探究,使学生形成一种等积代换的思想,为今后的学习奠定基础。

本节课的不足之处及改进思路:

1、小部分能力基础和能力都比较差的学生在探索过程中无所事事,因此教师应该在课前对不同层次的学生提出不同的要求,让每个学生多清楚地知道这节课自己的任务是什么。

2、本节课拼图验证的方法是以前学生很少接触的,所以在探索过程中很多学生都显得有些吃力。所以教师在讲方法一时,应该先介绍这种证明方法以及思路,让学生模仿第一种方法的'基础上,能轻松地总结出第二种方法,从而产生去探索更多方法的兴趣和动力,有利于学生的数学思维的提升。

3、对学生的人文教育和爱国教育不够。很多学生在探索过程中遇到困难时,选择放弃或等别人的答案。教师此时应该注意引导学生要勇于克服困难,主动进行探索,提高了自身的推理能力和创新精神。同时教师也要不断渗透爱国教育,培养学生的民族自豪感和爱国热情。

在我们的数学教学中,活动课是不可忽视的内容。在这个探索的过程中,学生绝大多数是不会创造或发明什么的,这是一个素质的表现和培养过程。学生得到什么结果是次要的,重要的是使学生的素质和能力得到培养。这是中学数学活动课的价值取向。

怎么证明勾股定理【第二篇】

勾股定理证明

勾股定理证明

中国最早的一部数学著作――《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”

商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦2

亦即:

a2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。

在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的'积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)

亦即:

c=(a2+b2)(1/2)

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化简后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的。十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”。

怎样证明勾股定理【第三篇】

作三个边长分别为a、b、c的`三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结。

BF、CD过C作CL⊥DE,交AB于点M,交DE于点L

∵AF=AC,AB=AD,∠FAB=∠GAD

∴ΔFAB≌ΔGAD

∵ΔFAB的面积等于ΔGAD的面积等于矩形ADLM的面积的一半

∵正方形ADEB的面积=矩形ADLM的面积+矩形MLEB的面积

∴a2+b2=c2

勾股定理证明方法【第四篇】

勾股定理的证明方法

勾股定理的证明方法

这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。

的平方=3的平方+4的平方

在图一中,D ABC 为一直角三角形,其中 A 为直角。我们在边 AB、BC 和 AC 之上分别画上三个正方形 ABFG、BCED 和 ACKH。过 A 点画一直线 AL 使其垂直於 DE 并交 DE 於 L,交 BC 於 M。不难证明,D FBC 全等於 D ABD()。所以正方形 ABFG 的面积 = 2 D FBC 的面积 = 2 D ABD 的面积 = 长方形 BMLD 的面积。类似地,正方形 ACKH 的面积 = 长方形 MCEL 的`面积。即正方形 BCED 的面积 = 正方形 ABFG 的面积 + 正方形 ACKH 的面积,亦即是 AB2 + AC2 = BC2。由此证实了勾股定理。

这个证明巧妙地运用了全等三角形和三角形面积与长方形面积的关系来进行。不单如此,它更具体地解释了,「两条直角边边长平方之和」的几何意义,这就是以 ML 将正方形分成 BMLD 和 MCEL 的两个部分!

这个证明的另一个重要意义,是在於它的出处。这个证明是出自古希腊大数学欧几里得之手。

欧几里得(Euclid of Alexandria)约生於公元前 325 年,卒於约公元前 265 年。他曾经在古希腊的文化中心亚历山大城工作,并完成了著作《几何原本》。《几何原本》是一部划时代的著作,它收集了过去人类对数学的知识,并利用公理法建立起演绎体系,对后世数学发展产生深远的影响。而书中的第一卷命题 47,就记载著以上的一个对勾股定理的证明。

图二中,我们将4个大小相同的直角三角形放在一个大正方形之内,留意大正方形中间的浅黄色部分,亦都是一个正方形。设直角三角形的斜()边长度为 c,其余两边的长度为 a 和 b,则由於大正方形的面积应该等於 4 个直角三角形和中间浅黄色正方形的面积之和,所以我们有

(a + b)2 = 4(1/2 ab) + c2

展开得 a2 + 2ab + b2 = 2ab + c2

化简得 a2 + b2 = c2

由此得知勾股定理成立。

相关推荐

热门文档

48 464605