首页 > 学习资料 > 教案大全 >

因式分解教案(通用4篇)

网友发表时间 362154

【路引】由阿拉题库网美丽的网友为您整理分享的“因式分解教案(通用4篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

因式分解教案【第一篇】

教学目标:

运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.

教学重点和难点

1.平方差公式;

2.完全平方公式;

3.灵活运用3种方法。

教学过程:

一、提出问题,得到新知

观察下列多项式:x24和y225

学生思考,教师总结:

(1)它们有两项,且都是两个数的平方差;

(2)会联想到平方差公式。

公式逆向:a2b2=(a+b)(ab)

如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式。

二、运用公式

例1:填空

①4a2=( )2②b2=( )2③=( )2

④=( )2⑤2x4=( )2⑥5x4y2=( )2

解答:①4a2=(2a)2;②b2=(b)2③=()2

④=()2⑤2x4=(x2)2⑥5x4y2=(x2y)2

例2:下列多项式能否用平方差公式进行因式分解

①+②4a2+625b2③16x549y4④4x236y2

解答:①+能用

②4a2+625b2不能用

③16x549y4不能用

④4x236y2不能用

因式分解教案【第二篇】

背景材料:

因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。因此,除了单纯的因式分解问题外,因式分解在解某些数学问题中有着广泛的作用,因式分解在三角形中的应用,因式分解可以用来证明代数问题,用于代数式的求值,用于求不定方程,用于解应用题解决有关复杂数值的计算,本节课的例题因式分解在数学题中的简单应用。

教材分析:

本节课是本章的最后一节,是学生学习因式分解初步应用,首先要使学生体会到因式分解在数学中应用,其次给学生提供更多机会体验主动学习和探索的“过程”与“经历”,使多数学里拥有一定问题解决的经验。

教学目标:

1、在整除的情况下,会应用因式分解,进行多项式相除。

2、会应用因式分解解简单的一元二次方程。

3、体验数学问题中的矛盾转化思想。

4、培养观察和动手能力,自主探索与合作交流能力。

教学重点:

学会应用因式分解进行多项式除法和解简单一元二次方程。

教学难点:

应用因式分解解简单的一元二次方程。

设计理念:

根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。

教学过程:

一、创设情境,复习提问

1、将正式各式因式分解

(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y

(3)2 a2b-8a2b (4)4x2-9

[四位同学到黑板上演板,本课时用复习“练习引入”也不失为一种好方法,既先复习因式分解的提取分因式和公式法,又为下面解决多项式除法运算作铺垫]

教师订正

提出问题:怎样计算(2 a2b-8a2b)÷(4a-b)

二、导入新课,探索新知

(先让学生思考上面所提出的问题,教师从旁启发)

师:如果出现竖式计算,教师可以给予肯定;可能出现(2 a2b-8a2b)÷(4a-b)= ab-8a2追问学生怎么得来的,运算的依据是什么?这样暴露学生的思维,让学生自己发现错误之处;观察2 a2b-8a2b=2 ab(b-4a),其中一个因式正好是除式4a-b的相反数,如果用“换元”思想,我们就可以把问题转化为单项式除以单项式。

(2 a2b-8a2b)÷(4a-b)

=-2ab(4a-b)÷(4a-b)

=-2ab

(让学生自己比较哪种方法好)

利用上面的数学解题思路,同学们尝试计算

(4x2-9)÷(3-2x)

学生总结解题步骤:1、因式分解;2、约去公因式)

(全体学生动手动脑,然后叫学生回答,及时表扬,讲练结合, [运用多项式的因式分解和换元的思想,可以把两个多项式相除,转化为单项式的除法]

练习计算

(1)(a2-4)÷(a+2)

(2)(x2+2xy+y2)÷(x+y)

(3)[(a-b)2+2(b-a)] ÷(a-b)

三、合作学习

1、以四人为一组讨论下列问题

若A?B=0,下面两个结论对吗?

(1)A和B同时都为零,即A=0且B=0

(2)A和B至少有一个为零即A=0或B=0

[合作学习,四个小组讨论,教师逐步引导,让学生讲自己的想法,及解题步骤,培养语言表达能力,体会运用因式分解的实际运用作用,增加学习兴趣]

2、你能用上面的结论解方程

(1)(2x+3)(2x-3)=0 (2)2x2+x=0

解:

∵(2x+3)(2x-3)=0

∴2x+3=0或2x-3=0

∴方程的解为x=-3/2或x=3/2

解:x(2x+1)=0

则x=0或2x+1=0

∴原方程的解是x1=0,x2=-1/2

[让学生先独立完成,再组织交流,最后教师针对性地讲解,让学生总结步骤:1、移项,使方程一边变形为零;2、等式左边因式分解;3、转化为解一元一次方程]

3、练习,解下列方程

(1)x2-2x=0 4x2=(x-1)2

四、小结

(1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。

(2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。

设计理念:

根据本节课的内容特点,主要采用师生合作讨论式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。

因式分解教案【第三篇】

教学目标

1.知识与技能

了解因式分解的意义,以及它与整式乘法的关系.

2.过程与方法

经历从分解因数到分解因式的类比过程,掌握因式分解的'概念,感受因式分解在解决问题中的作用.

3.情感、态度与价值观

在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.

重、难点与关键

1.重点:了解因式分解的意义,感受其作用.

2.难点:整式乘法与因式分解之间的关系.

3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.

教学方法

采用“激趣导学”的教学方法.

教学过程

一、创设情境,激趣导入

问题牵引

请同学们探究下面的2个问题:

问题1:720能被哪些数整除?谈谈你的想法.

问题2:当a=102,b=98时,求a2-b2的值.

二、丰富联想,展示思维

探索:你会做下面的填空吗?

1.ma+mb+mc=( )( );

2.x2-4=( )( );

3.x2-2xy+y2=( )2.

师生共识把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.

三、小组活动,共同探究

问题牵引

(1)下列各式从左到右的变形是否为因式分解:

①(x+1)(x-1)=x2-1;

②a2-1+b2=(a+1)(a-1)+b2;

③7x-7=7(x-1).

(2)在下列括号里,填上适当的项,使等式成立.

①9x2(______)+y2=(3x+y)(_______);

②x2-4xy+(_______)=(x-_______)2.

四、随堂练习,巩固深化

课本练习.

探研时空计算:993-99能被100整除吗?

五、课堂总结,发展潜能

由学生自己进行小结,教师提出如下纲目:

1.什么叫因式分解?

2.因式分解与整式运算有何区别?

六、布置作业,专题突破

选用补充作业.

板书设计

因式分解

1、因式分解 例:

练习:

提公因式法

教学目标

1.知识与技能

能确定多项式各项的公因式,会用提公因式法把多项式分解因式.

2.过程与方法

使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.

3.情感、态度与价值观

培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.

重、难点与关键

1.重点:掌握用提公因式法把多项式分解因式.

2.难点:正确地确定多项式的最大公因式.

3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

教学方法

采用“启发式”教学方法.

教学过程

一、回顾交流,导入新知

复习交流

下列从左到右的变形是否是因式分解,为什么?

(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2.

问题:

1.多项式mn+mb中各项含有相同因式吗?

2.多项式4x2-x和xy2-yz-y呢?

请将上述多项式分别写成两个因式的乘积的形式,并说明理由.

教师归纳我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.

二、小组合作,探究方法

教师提问 多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

师生共识提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

三、范例学习,应用所学

例1把-4x2yz-12xy2z+4xyz分解因式.

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

例2分解因式,3a2(x-y)3-4b2(y-x)2

思路点拨观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)23a2(y-x)+4b2(y-x)2]

=-(y-x)2 [3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)23a2(x-y)-4b2(x-y)2

=(x-y)2 [3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

例3用简便的方法计算:×12+12×-×12.

教师活动引导学生观察并分析怎样计算更为简便.

解:×12+12×-×12

=12×(+-)

=12×1=12.

教师活动在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

四、随堂练习,巩固深化

课本P167练习第1、2、3题.

探研时空

利用提公因式法计算:

×+×+×+×

五、课堂总结,发展潜能

1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.

2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.

六、布置作业,专题突破

课本P170习题15.4第1、4(1)、6题.

板书设计

提公因式法

1、提公因式法 例:

练习:

公式法(一)

教学目标

1.知识与技能

会应用平方差公式进行因式分解,发展学生推理能力.

2.过程与方法

经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.

3.情感、态度与价值观

培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.

重、难点与关键

1.重点:利用平方差公式分解因式.

2.难点:领会因式分解的解题步骤和分解因式的彻底性.

3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.

教学方法

采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.

教学过程

一、观察探讨,体验新知

问题牵引

请同学们计算下列各式.

(1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

学生活动动笔计算出上面的两道题,并踊跃上台板演.

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

教师活动引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.

1.分解因式:a2-25; 2.分解因式16m2-9n.

学生活动从逆向思维入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

教师活动引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).

二、范例学习,应用所学

例1把下列各式分解因式:(投影显示或板书)

(1)x2-9y2; (2)16x4-y4;

(3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x).

思路点拨在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.

教师活动启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.

学生活动分四人小组,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);

(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

三、随堂练习,巩固深化

课本P168练习第1、2题.

探研时空

1.求证:当n是正整数时,n3-n的值一定是6的倍数.

2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.

四、课堂总结,发展潜能

运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.

五、布置作业,专题突破

课本P171习题15.4第2、4(2)、11题.

板书设计

公式法(一)

1、平方差公式: 例:

a2-b2=(a+b)(a-b) 练习:

公式法(二)

教学目标

1.知识与技能

领会运用完全平方公式进行因式分解的方法,发展推理能力.

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.

重、难点与关键

1.重点:理解完全平方公式因式分解,并学会应用.

2.难点:灵活地应用公式法进行因式分解.

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的.

教学方法

采用“自主探究”教学方法,在教师适当指导下完成本节课内容.

教学过程

一、回顾交流,导入新知

问题牵引

1.分解因式:

(1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

(3) x2-.

因式分解教案【第四篇】

15.1.1 整式

教学目标

1.单项式、单项式的定义.

2.多项式、多项式的次数.

3、理解整式概念.

教学重点

单项式及多项式的有关概念.

教学难点

单项式及多项式的有关概念.

教学过程

Ⅰ.提出问题,创设情境

在七年级,我们已经学习了用字母可以表示数,思考下列问题

1.要表示△ABC的周长需要什么条件?要表示它的面积呢?

2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?

结论:

1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为 ?c?h.

2.小王的平均速度是 .

问题:这些式子有什么特征呢?

(1)有数字、有表示数字的字母.

(2)数字与字母、字母与字母之间还有运算符号连接.

归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.

判断上面得到的三个式子:a+b+c、 ch、 是不是代数式?(是)

代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.

Ⅱ.明确和巩固整式有关概念

(出示投影)

结论:(1)正方形的周长:4x.

(2)汽车走过的路程:vt.

(3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.

(4)n的相反数是-n.

分析这四个数的特征.

它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、 ch、 中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.

请同学们阅读课本P160~P161单项式有关概念.

根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、 ch、 这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.

结论:4x、vt、6a2、a3、-n、 ch是单项式.它们的系数分别是4、1、6、1、-1、 .它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、 ch都是二次单项式;a3是三次单项式.

问题:vt中v和t的指数都是1,它不是一次单项式吗?

结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.

生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?

写出下列式子(出示投影)

结论:(1)t-5.(2)3x+5y+2z.

(3)三角尺的面积应是直角三角形的面积减去圆的面积,即 .

(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.

我们可以观察下列代数式:

a+b+c、t-5、3x+5y+2z、 、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?

这样推理合情合理.请看投影,熟悉下列概念.

根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、 、x2+2x+18都是多项式.请分别指出它们的项和次数.

a+b+c的项分别是a、b、c.

t-5的项分别是t、-5,其中-5是常数项.

3x+5y+2z的项分别是3x、5y、2z.

的项分别是 ab、-.

x2+2x+18的项分别是x2、2x、18. 找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.

这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.

Ⅲ.随堂练习

1.课本P162练习

Ⅳ.课时小结

通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.

Ⅴ.课后作业

1.课本P165~P166习题15.1─1、5、8、9题.

2.预习“整式的加减”.

课后作业:《课堂感悟与探究》

15.1.2 整式的加减(1)

教学目的:

1、解字母表示数量关系的过程,发展符号感。

2、会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。

教学重点:

会进行整式加减的运算,并能说明其中的算理。

教学难点:

正确地去括号、合并同类项,及符号的正确处理。

教学过程:

一、课前练习:

1、填空:整式包括 和

2、单项式 的系数是 、次数是

3、多项式 是 次 项式,其中二次项

系数是 一次项是 ,常数项是

4、下列各式,是同类项的一组是( )

(A) 与 (B) 与 (C) 与

5、去括号后合并同类项:

二、探索练习:

1、如果用a 、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 交换这个两位数的。十位数字和个位数字后得到的两位数为

这两个两位数的和为

2、如果用a 、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为 交换这个三位数的百位数字和个位数字后得到的三位数为

这两个三位数的差为

●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?

说说你是如何运算的?

▲整式的加减运算实质就是

运算的结果是一个多项式或单项式。

三、巩固练习:

1、填空:(1) 与 的差是

(2)、单项式 、 、 、 的和为

(3)如图所示,下面为由棋子所组成的三角形,

一个三角形需六个棋子,三个三角形需

( )个棋子,n个三角形需 个棋子

2、计算:

(1)

(2)

(3)

3、(1)求 与 的和

(2)求 与 的差

4、先化简,再求值: 其中

四、提高练习:

1、若A是五次多项式,B是三次多项式,则A+B一定是

(A)五次整式 (B)八次多项式

(C)三次多项式 (D)次数不能确定

2、足球比赛中,如果胜一场记3a分,平一场记a分,负一场

记0分,那么某队在比赛胜5场,平3场,负2场,共积多

少分?

3、一个两位数与把它的数字对调所成的数的和,一定能被14

整除,请证明这个结论。

4、如果关于字母x的二次多项式 的值与x的取值无关,

试求m、n的值。

五、小结:整式的加减运算实质就是去括号和合并同类项。

六、作业:第8页习题1、2、3

15.1.2整式的加减(2)

教学目标:1.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。

2、通过探索规律的问题,进一步符号表示的意义,发展符号感,发展推理能力。

教学重点:整式加减的运算。

教学难点:探索规律的猜想。

教学方法:尝试练习法,讨论法,归纳法。

教学用具:投影仪

教学过程:

I探索练习:

摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋子,摆第3个需要 枚棋子。按照这样的方式继续摆下去。

(1)摆第10个这样的“小屋子”需要 枚棋子

(2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。

二、例题讲解:

三、巩固练习:

1、计算:

(1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

(3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)

2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B

3、列方程解应用题:三角形三个内角的和等于180°,如果三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15°,那么

(1)第一个角是多少度?

(2)其他两个角各是多少度?

四、提高练习:

1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?

2、设A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+

(y+3)2=0,且B-2A=a,求A的值。

3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:

试化简:│a│-│a+b│+│c-a│+│b+c│

小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

作 业:课本P14习题:1(2)、(3)、(6),2。

相关推荐

热门文档

20 362154