首页 > 学习资料 > 教案大全 >

因式分解教案 因式分解教案优秀4篇

网友发表时间 2740201

【导言】此例“因式分解教案 因式分解教案优秀4篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

因式分解优秀教案【第一篇】

教学目标:

1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。

2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。

4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。

教学重点:

应用平方差公式分解因式.

教学难点:

灵活应用公式和提公因式法分解因式,并理解因式分解的要求.

教学过程:

一、复习准备 导入新课

1、什么是因式分解?判断下列变形过程,哪个是因式分解?

①(x+2)(x-2)= ②

2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。

x2+2x

a2b-ab

3、根据乘法公式进行计算:

(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

二、合作探究 学习新知

(一) 猜一猜:你能将下面的多项式分解因式吗?

(1)= (2)= (3)=

(二)想一想,议一议: 观察下面的公式:

=(a+b)(a—b)(

这个公式左边的多项式有什么特征:_____________________________________

公式右边是__________________________________________________________

这个公式你能用语言来描述吗? _______________________________________

(三)练一练:

1、下列多项式能否用平方差公式来分解因式?为什么?

① ② ③ ④

2、你能把下列的数或式写成幂的形式吗?

(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) =( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

(四)做一做:

例3 分解因式:

(1) 4x2- 9 (2) (x+p)2- (x+q)2

(五)试一试:

例4 下面的式子你能用什么方法来分解因式呢?请你试一试。

(1) x4- y4 (2) a3b- ab

(六)想一想:

某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?

因式分解教案【第二篇】

第1课时

1.使学生了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形。

2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解。

自主探索,合作交流。

1.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想。

2.通过对因式分解的教学,培养学生“换元”的意识。

重点 因式分解的概念及提公因式法的应用。

难点 正确找出多项式中各项的公因式。

教师准备 多媒体。

学生准备 复习有关乘法分配律的知识。

导入一:

问题 一块场地由三个长方形组成,这些长方形的长分别为,宽都是,求这块场地的面积。

解法1:这块场地的面积=×+×+×=++==2.

解法2:这块场地的面积=×+×+×=×=×4=2.

从上面的。解答过程看,解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些。这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是将多项式化为几个整式的积的形式的一种方法。

[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础。

导入二:

问题 计算×15-×9+×2采用什么方法?依据是什么?

解法1:原式=-+==5.

解法2:原式=×(15-9+2)=×8=5.

解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些。这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是把多项式化为几个整式的积的形式的一种方法。

[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础。

一、提公因式法分解因式的概念

思路一

[过渡语] 上一节我们学习了什么是因式分解,那么怎样进行因式分解呢?我们来看下面的问题。

如果一块场地由三个长方形组成,这三个长方形的长分别为a,b,c,宽都是,那么这块场地的面积为a+b+c或(a+b+c),可以用等号来连接,即:a+b+c=(a+b+c).

大家注意观察这个等式,等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?

分析:等式左边的每一项都含有因式,等式右边是与多项式a+b+c的乘积,从左边到右边的过程是因式分解。

由于是左边多项式a+b+c中的各项a,b,c都含有的一个相同因式,因此叫做这个多项式各项的公因式。

由上式可知,把多项式a+b+c写成与多项式a+b+c的乘积的形式,相当于把公因式从各项中提出来,作为多项式a+b+c的一个因式,把从多项式a+b+c的各项中提出后形成的多项式a+b+c,作为多项式a+b+c的另一个因式。

总结:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法。

[设计意图] 通过实例的教学,使学生明白什么是公因式和用提公因式法分解因式。

思路二

[过渡语] 同学们,我们来看下面的问题,看看同学们谁先做出来。

多项式 ab+ac中,各项都含有相同的因式吗?多项式 3x2+x呢?多项式b2+nb-b呢?

结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式。

多项式2x2+6x3中各项的公因式是什么?你能尝试将多项式2x2+6x3因式分解吗?

结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法。

[设计意图] 从让学生找出几个简单多项式的公因式,再到让学生尝试将多项式分解因式,使学生理解公因式以及提公因式法分解因式的概念。

二、例题讲解

[过渡语] 刚刚我们学习了因式分解的一种方法,现在我们尝试下利用这种方法进行因式分解吧。

(教材例1)把下列各式因式分解:

(1)3x+x3;

(2)7x3-21x2;

(3)8a3b2-12ab3c+ab;

(4)-24x3+12x2-28x.

〔解析〕 首先要找出各项的公因式,然后再提取出来。要避免提取公因式后,各项中还有公因式,即“没提彻底”的现象。

解:(1)3x+x3=x3+xx2=x(3+x2).

(2)7x3-21x2=7x2x-7x23=7x2(x-3).

(3)8a3b2-12ab3c+ab

=ab8a2b-ab12b2c+ab1

=ab(8a2b-12b2c+1).

(4)-24x3+12x2-28x

=-(24x3-12x2+28x)

=-(4x6x2-4x3x+4x7)

=-4x(6x2-3x+7).

学生活动 通过刚才的练习,大家互相交流,总结出提取公因式的一般步骤和容易出现的问题。

总结:提取公因式的步骤:(1)找公因式;(2)提公因式。

容易出现的问题(以本题为例):(1)第(2)题中只提出7x作为公因式;(2)第(3)题中最后一项提出ab后,漏掉了“+1”;(3)第(4)题提出“-”号时,没有把后面的因式中的每一项都变号。

教师提醒:

(1)各项都含有的字母的最低次幂的积是公因式的字母部分;

(2)因式分解后括号内的多项式的项数与原多项式的项数相同;

(3)若多项式的首项为“-”,则先提取“-”号,然后再提取其他公因式;

(4)将分解因式后的式子再进行整式的乘法运算,其积应与原式相等。

[设计意图] 经历用提公因式法进行因式分解的过程,在教师的启发与指导下,学生自己归纳出提公因式的步骤及提取公因式时容易出现的类似问题,为提取公因式积累经验。

1.提公因式法分解因式的一般形式,如:

a+b+c=(a+b+c).

这里的字母a,b,c,可以是一个系数不为1的、多字母的、幂指数大于1的单项式。

2.提公因式法分解因式的关键在于发现多项式的公因式。

3.找公因式的一般步骤:

(1)若各项系数是整系数,则取系数的最大公约数;

(2)取各项中相同的字母,字母的指数取最低的;

(3)所有这些因式的乘积即为公因式。

1.多项式-6ab2+18a2b2-12a3b2c的公因式是( )

A.-6ab2cB.-ab2

C.-6ab2D.-6a3b2c

解析:根据确定多项式各项的公因式的方法,可知公因式为-6ab2.故选C.

2.下列用提公因式法分解因式正确的是( )

=3abc(4-3ab)

+6=3(x2-x+2)

C.-a2+ab-ac=-a(a-b+c)

+5x-=(x2+5x)

解析:=3ab(4c-3ab),错误;+6=3(x2-x+2),错误;+5x-=(x2+5x-1),错误。故选C.

3.下列多项式中应提取的公因式为5a2b的是( )

+50a4b

+15a4b2

解析:B.应提取公因式5ab2,错误;C.应提取公因式10a2b,错误;D.应提取公因式5a2b2,错误。故选A.

4.填空。

(1)5a3+4a2b-12abc=a( );

(2)多项式32p2q3-8pq4的公因式是 ;

(3)3a2-6ab+a= (3a-6b+1);

(4)因式分解:+n= ;

(5)-15a2+5a= (3a-1);

(6)计算:21××= .

答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-

5.用提公因式法分解因式。

(1)8ab2-16a3b3;

(2)-15x-5x2;

(3)a3b3+a2b2-ab;

(4)-3a3-6a2+12a.

解:(1)8ab2(1-2a2b).

(2)-5x(3+x).

(3)ab(a2b2+ab-1).

(4)-3a(a2+2a-4).

第1课时

一、教材作业

必做题

教材第96页随堂练习。

选做题

教材第96页习题

二、课后作业

基础巩固

1.把多项式4a2b+10ab2分解因式时,应提取的公因式是 .

2.(20xx淮安中考)因式分解:x2-3x= .

3.分解因式:12x3-18x22+24x3=6x .

能力提升

4.把下列各式因式分解。

(1)3x2-6x;

(2)5x23-25x32;

(3)-43+162-26;

(4)15x32+5x2-20x23.

拓展探究

5.分解因式:an+an+2+a2n.

6.观察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….这列式子有什么规律?请你将猜想到的规律用含有字母n(n为自然数)的式子表示出来。

答案与解析

(x-3)

3.(2x2-3x+42)

4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).

5.解:原式=an1+ana2+anan=an(1+a2+an).

6.解:由题中给出的几个式子可得出规律:n2+n=n(n+1).

本节运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,使学生易于理解和掌握。如学生在接受提公因式法时,由提公因数到提公因式,由整式乘法的逆运算到提公因式法的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解。

在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。

由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,比如在以后将要学习的分式运算、解分式方程等中都要用到因式分解的知识,因此应该注重因式分解的概念和方法的教学。

随堂练习(教材第96页)

解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).

习题(教材第96页)

1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).

2.解:(1)++=(++)=×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×()=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.

3.解:(1)不正确,因为提取的公因式不对,应为n(2n--1). (2)不正确,因为提取公因式-b后,第三项没有变号,应为-b(ab-2a+3). (3)正确。 (4)不正确,因为最后的结果不是乘积的形式,应为(a-2)(a+1).

提公因式法是本章的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法分配律的逆运算到提公因式的过程,让学生体会数学中的一种主要思想——类比思想。运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,可以使学生易于理解和掌握。如学生在接受提公因式法时,由整式乘法的逆运算到提公因式法的概念,就利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,进而使学生进一步理解因式分解与整式乘法运算之间的互逆关系。

已知方程组求7(x-3)2-2(3-x)3的值。

〔解析〕 将代数式分解因式,产生x-3与2x+两个因式,再根据方程组整体代入,使计算简便。

解:7(x-3)2-2(3-x)3

=(x-3)2[7+2(x-3)]

=(x-3)2(7+2x-6)

=(x-3)2(2x+).

由方程组可得原式=12×6=6.

因式分解教案【第三篇】

教学目标

1.知识与技能

了解因式分解的意义,以及它与整式乘法的关系.

2.过程与方法

经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.

3.情感、态度与价值观

在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.

重、难点与关键

1.重点:了解因式分解的意义,感受其作用.

2.难点:整式乘法与因式分解之间的关系.

3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.

教学方法

采用“激趣导学”的教学方法.

教学过程

一、创设情境,激趣导入

问题牵引

请同学们探究下面的2个问题:

问题1:720能被哪些数整除?谈谈你的想法.

问题2:当a=102,b=98时,求a2-b2的值.

二、丰富联想,展示思维

探索:你会做下面的填空吗?

1.ma+mb+mc=( )( );

2.x2-4=( )( );

3.x2-2xy+y2=( )2.

师生共识把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.

三、小组活动,共同探究

问题牵引

(1)下列各式从左到右的`变形是否为因式分解:

①(x+1)(x-1)=x2-1;

②a2-1+b2=(a+1)(a-1)+b2;

③7x-7=7(x-1).

(2)在下列括号里,填上适当的项,使等式成立.

①9x2(______)+y2=(3x+y)(_______);

②x2-4xy+(_______)=(x-_______)2.

四、随堂练习,巩固深化

课本练习.

探研时空计算:993-99能被100整除吗?

五、课堂总结,发展潜能

由学生自己进行小结,教师提出如下纲目:

1.什么叫因式分解?

2.因式分解与整式运算有何区别?

六、布置作业,专题突破

选用补充作业.

板书设计

因式分解

1、因式分解 例:

练习:

提公因式法

教学目标

1.知识与技能

能确定多项式各项的公因式,会用提公因式法把多项式分解因式.

2.过程与方法

使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.

3.情感、态度与价值观

培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.

重、难点与关键

1.重点:掌握用提公因式法把多项式分解因式.

2.难点:正确地确定多项式的最大公因式.

3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

教学方法

采用“启发式”教学方法.

教学过程

一、回顾交流,导入新知

复习交流

下列从左到右的变形是否是因式分解,为什么?

(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2.

问题:

1.多项式mn+mb中各项含有相同因式吗?

2.多项式4x2-x和xy2-yz-y呢?

请将上述多项式分别写成两个因式的乘积的形式,并说明理由.

教师归纳我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.

二、小组合作,探究方法

教师提问 多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

师生共识提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

三、范例学习,应用所学

例1把-4x2yz-12xy2z+4xyz分解因式.

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

例2分解因式,3a2(x-y)3-4b2(y-x)2

思路点拨观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)23a2(y-x)+4b2(y-x)2]

=-(y-x)2 [3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)23a2(x-y)-4b2(x-y)2

=(x-y)2 [3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

例3用简便的方法计算:×12+12×-×12.

教师活动引导学生观察并分析怎样计算更为简便.

解:×12+12×-×12

=12×(+-)

=12×1=12.

教师活动在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

四、随堂练习,巩固深化

课本P167练习第1、2、3题.

探研时空

利用提公因式法计算:

×+×+×+×

五、课堂总结,发展潜能

1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.

2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.

六、布置作业,专题突破

课本P170习题15.4第1、4(1)、6题.

板书设计

提公因式法

1、提公因式法 例:

练习:

公式法(一)

教学目标

1.知识与技能

会应用平方差公式进行因式分解,发展学生推理能力.

2.过程与方法

经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.

3.情感、态度与价值观

培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.

重、难点与关键

1.重点:利用平方差公式分解因式.

2.难点:领会因式分解的解题步骤和分解因式的彻底性.

3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.

教学方法

采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.

教学过程

一、观察探讨,体验新知

问题牵引

请同学们计算下列各式.

(1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

学生活动动笔计算出上面的两道题,并踊跃上台板演.

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

教师活动引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.

1.分解因式:a2-25; 2.分解因式16m2-9n.

学生活动从逆向思维入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

教师活动引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).

二、范例学习,应用所学

例1把下列各式分解因式:(投影显示或板书)

(1)x2-9y2; (2)16x4-y4;

(3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x).

思路点拨在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.

教师活动启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.

学生活动分四人小组,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);

(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

三、随堂练习,巩固深化

课本P168练习第1、2题.

探研时空

1.求证:当n是正整数时,n3-n的值一定是6的倍数.

2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.

四、课堂总结,发展潜能

运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.

五、布置作业,专题突破

课本P171习题15.4第2、4(2)、11题.

板书设计

公式法(一)

1、平方差公式: 例:

a2-b2=(a+b)(a-b) 练习:

公式法(二)

教学目标

1.知识与技能

领会运用完全平方公式进行因式分解的方法,发展推理能力.

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.

重、难点与关键

1.重点:理解完全平方公式因式分解,并学会应用.

2.难点:灵活地应用公式法进行因式分解.

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的.

教学方法

采用“自主探究”教学方法,在教师适当指导下完成本节课内容.

教学过程

一、回顾交流,导入新知

问题牵引

1.分解因式:

(1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

(3) x2-.

因式分解优秀教案【第四篇】

教学目标:

1、进一步巩固因式分解的概念;

2、巩固因式分解常用的三种方法

3、选择恰当的方法进行因式分解

4、应用因式分解来解决一些实际问题

5、体验应用知识解决问题的乐趣

教学重点:灵活运用因式分解解决问题

教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3

教学过程:

一、创设情景:若a=101,b=99,求a2-b2的值

利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

二、知识回顾

1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。

判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)

(1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

(3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

(5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

(7).2πR+2πr=2π(R+r) 因式分解

2、.规律总结(教师讲解): 分解因式与整式乘法是互逆过程。

分解因式要注意以下几点: (1).分解的对象必须是多项式。

(2).分解的结果一定是几个整式的乘积的形式。 (3).要分解到不能分解为止。

3、因式分解的方法

提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

4、强化训练

试一试把下列各式因式分解:

(1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

(3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

三、例题讲解

例1、分解因式

(1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

(3) (4)y2+y+例2、分解因式

1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

例3、分解因式

1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

三、知识应用

1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)

3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

4、.若x=-3,求20x2-60x的值。 5、1993-199能被200整除吗?还能被哪些整数整除?

四、拓展应用

1.计算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

2、20042+2004被2005整除吗?

3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数。

五、课堂小结:今天你对因式分解又有哪些新的认识?

相关推荐

热门文档

20 2740201