首页 > 学习资料 > 教案大全 >

加法交换律精编3篇

网友发表时间 528657

【路引】由阿拉题库网美丽的网友为您整理分享的“加法交换律精编3篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

加法的意义和加法交换律1

教学内容:教科书第47—48页的内容,练习十一的第1—4题。

教学目的:

1、使学生在已学过的加法知识的基础上,概括出加法的意义,对加法的认识从感性上升到理性。

2、使学生理解并掌握加法交换律。

教学过程 :

一、教学加法的意义。

教师:我们在前三年已经学过加法的计算方法,现在要进一步学习、掌握加法的一些规律性知识,这些知识对以后学习有很大帮助。

1.加法的意义。

(1)教学例1。

教师出示例1,让学生读题,边指名说出条件和问题,教师边用线段图表示出数量关系。

137千米      357千米

北京    天津               济南

然后让学生自己解答,解答后,说一说为什么用加法计算。(因为已知北京到天津的铁路长137千米,又知道天津到济南的铁路长357千米,要求北京到济南的铁路长,就要把两段铁路长合并起来,也就是要把137和357合并起来,所以要用加法计算。)教师边重述用加法算的理由,边板书出加法算式和答案。再进一步提问:

“加法是什么样的运算?”

在此基础上,教师给出加法的意义:把两个数合并成一个数的运算叫做加法。

(2)做练习十一的第1题。

要让学生应用加法的意义说明各题为什么用加法计算。如第1小题,可以启发学生说出:因为已知小强和小明邮票的张数,要求小强和小明一共有多少张邮票,就耍把他俩的邮票张数合并起来,加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。

2.加法各部分的名称。

教师指着137+357=494,提问:

137和357在加法算式中叫什么数?(加数。)

它们相加得到的结果494叫什么?(和。)

然后教师联系加法的意义说明:相加的两个数叫做加数,加得的数也就是合并的结果叫做和。边说边对应地板书出:

137+357=494

│    │   │

加数 加数  和

提问:

“我们上面做的加法,两个加数是什么样的数?”(自然数。)

“任何两个自然数相加得到的和都比加数怎样?”(大。)

“—个自然数和0相加得到的和怎样呢?”(还得原数。)

“你能举出一个自然数和0相加的几个例子吗?”

教师把学生举出的例子板书出来。(如,3+O=3,0+4=4,0+0=0)

然后接着问:

“O和0相加会怎样?”(还得0。)

“从上面的例子我们可以看出一个自然数和0相加还得这个自然数,0和0相加还得0,也就是说任何数和0相加都怎样?”(得原数。)

二、教学加法交换律

教师:加法运算有一些基本性质,对我们以后的计算很有用。下面我们就来学习加法的一个运算定律。

1.结合例1的两种解法,引导学生比较它们的特点。

提问:

“上面的例1,求北京到济南的铁路长是怎样列式计算的?”

“如果求济南到北京的铁路长该怎样列式计算?”(如果学生说仍用原来的算式,教师可以引导学生想还可以怎样列式计算。)

学生回答后,教师板书出:357+137=494(千米),并让学生说一说为什么用加法计算。

接着让学生观察、比较两种解法的结果怎样,启发学生说出:137+357和357+137的结果相等。教师板书:137+357=357+137

然后让学生比较一下等号两边的算式的相同点是什么?(都是137和357两个数相加。)不同点是什么?(等号左边是137加357,等号右边是357加137。)

引导学生回答后,教师归纳:137加357与357加137的得数一样,也就是和不变。

2、再出两组算式,引导学生比较,加以概括。

提出:能不能只从这一个例子就得出“相加的两个数交换位置,和不变”?

教师指出:不能只根据一个例子就做出一般结论,我们必须多考察几组不同的算式。

下面我们观察一下这几组算式,看一看它们有什么样的关系。

教师板书出下面的算式:

18+17○17+18

124+235○235+124

让学生算一算,再提问:

“每组算式有什么关系?○里应填什么?这几组算式有什么共同特点?你发现了什么

规律?从这几组算式你能得出什么结论?”

3.比较三个等式,归纳出一般规律。

引导学生归纳,突出以下几点:

(1)这三个等式中,每组算式有几个加数?(两个加数。)

(2)每个等式中,左右两边的加数的位置怎样?左右两边的和怎样?

请几个学生试着把发现的规律说一说,然后教师完整地叙述一遍,说明这一规律叫做加法交换律。再看看教科书第48页方框里的话。

4.用字母表示加法交换律。

教师提出:用语言表述加法交换律比较麻烦,大家想一想怎样能把这一规律表示得既简单又清楚?

学生回答后,教师肯定地说明用字母表示可以做到这一点。然后提出:如果用字母a和b分别表示两个加数,怎样表示加法交换律?

学生回答后,教师板书:a+b=b+a

说明:a和b可以表示0、1、2、3、……中的任意一个数;一个用数字表示的等式只能表示两个具体的数交换位置,和不变,不能表示任意的两个数交换位置,和不变,而用a+b=b+a”,就可以表示任意两个数相加,交换加数的位置,和不变。比如,“a+b=b+a”可以表示2+1=1+2,137+357=357+137,18+17=17+18等等。

接着教师提问:

“想一想我们在以前学过的哪些计算中用到了加法交换律?”

使学生明确以前学过的用交换加数的位置再加一遍的方法来验算加法,就是用加法交换律的。

5.做第48页的“做一做”。

第1题,让学生在方框里填上适当的数,订正时,说一说是根据哪个规律填写的。

第2题,验算的竖式可以直接写在原式的右边。

三、巩固练习

做练习十一的第2—4题。

1.第2题,要注意让学生弄清根据哪个运算定律来填数,对有困难的学生可以对照运算定律的结语及字母表达式帮助理解。对于运算定律的表述,只要求表述得清楚没有错误,不要求学生一字不差地背下来。

2.第3题,让学生根据运算定律来判断每个等式是不是符合运算定律的要求。如230+370=380+220,虽然左右两边的得数相等,但由于两边的加数不同,所以不符合加法交换律。又如,30+50+40=50+30+40,虽然是三个数相加,但是前两个加数交换了位置;加得的和不变,还是符合加法交换律的。

四、小结

教师:今天我们学习了加法的意义和加法的一个运算定律——加法交换律。谁能结合具体的题目说一说的含义?

读书破万卷下笔如有神,以上就是差异网为大家带来的3篇《加法交换律》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在差异网。

加法的意义和加法交换律2

课题一:加法的意义和加法交换律

教学内容:教科书第48—49页的内容,练习十一的第1—4题。

教学目的:

1.使学生在已学过的加法知识的基础上,概括出加法的意义,对加法的认识从感性上升到理性。

2、使学生理解并掌握加法交换律。

教学重点:加法的意义

教学难点 :加法交换律

教具准备:小黑板

教学过程 :

一、教学加法的意义

教师:我们在前三年已经学过加法的计算方法,现在要进一步学习、掌握加法的一些规律性知识,这些知识对以后学习有很大帮助。

1、加法的意义。

(1)教学例1。

教师出示例1,让学生读题,边指名说出条件和问题,教师边用线段图表示出数量关系。

137千米      357千米

北京      天津                济南

然后让学生自己解答,解答后,说一说为什么用加法计算。(因为已知北京到天津的铁路长137千米,又知道天津到济南的铁路长357千米,要求北京到济南的铁路长,就要把两段铁路长合并起来,出就是要把137和357合并起来,所以要用加法计算。)教师边重述用加法算的理由,边板书出算式和答案。现进一步提问:

“加法是什么样的运算?”

在此基础上,教师给出加法的意义:把两个数合并成一个数的运算叫做加法。

(2)做练习十一的第1题。

要让学生应用加法的意义说明各题为什么用加法计算。如第1小题,可以启发学生说出:因为已知小强和小明邮票的张数,要求小强和小明一共有多少张邮票,就要把他俩的邮票张数合并起来,加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。

2.加法各部分的名称。

教师指着137+357=494,提问:

137和357在加法算式中叫什么数?(加数。)

它们相加得到的结果494叫什么?(和。)

然后教师联系的意义说明:相加的两个数叫做加数,加得的数也就是合并的结果叫做和。边说边对应地板书出:

1 3 7 + 3 5 7 =4 9 4

加数+加数=和

提问:

“我们上面做的加法,两个加数是什么样的数?”(自然数。)

“任何两个自然数相加得到的和都比加数怎样?”(大。)

“一个自然数和0相加得到的和怎样呢?”(还得原数。)

“你能举出一个自然数和0相加的几个例子吗?”

教师把学生举出的例子板书出来。(如,3+0=3,0+4=4,0+0=0)

然后接着问:

“0和0相加会怎样?”(还得0。)

“人上面的例子我们可以看出一个自然数和0相加还得这个自然数,0和0相加还得0,也就是说任何数和0相加都怎样?”(得原数。)

二、教学加法交换律

教师:加法运算有一些基本性质,对我们以后的计算很有用。下面我们就来学习加法的一个运算定律。

1、结合例1的两种解法,引导学生比较它们的特点。

提问:

“上面”的例1,求北京到济南的铁路长是怎样列式计算的?”

“如果求济南到北京的铁路长该怎样列式计算?”(如果学生说仍用原来的算式,教师可以引导学生想还可以怎样列式计算。)

学生回答后,教师板书出:357+137=494(千米),并让学生说一说为什么用加法计算。

接着让学生观察、比较两种解法的结果怎样,启发学生说出:137+357和357+137的结果相等。教师板书:137+357=357+137

然后让学生比较一下等号两边的算式的相同点是什么?(都是137和357两个数相加)不同点是什么?(等号左边是137加357,等号右边是357加137。)

引导学生回答后,教师归纳:137和357与357和137的得数一样,出就是和不变。

2.再出两组算式,引导学生比较,加以概括。

提出:能不能只从这一个例子就得出“相加的两个数交换位置,和不变”?

教师指出:不能只根据一个例子就做出一般结论,我们必须多考察几组不同的算式。下面我们观察一下这几组算式,看一看它们有什么样的关系。

教师板书出下面的算式:

18+17   17+18

124+235   235+124

让学生算一算,再提问:

“每组算式有什么关系?   里应填什么?这几组算式有什么共同特点?你发现了什么规律?从这几组算式你能得出什么结论?”

3.比较三个等工,归纳出一般规律。

引导学生归纳,突出以下几点:

(1)这三个等式中,每组算式有几个加数?(两个加数)

(2)每个等式中,左右两边的加数的位置怎样?左右两边的和怎样?请几个学生试着把发现的规律说一说,然后教师完整地叙述一遍,说明这一规律叫做加法交换律。再看看教科书第48页方框里的话。

4.用字母表示加法交换律。

教师提出:用语言表述加法交换律比较麻烦,大家想一想怎样能把这一规律表示得既简单又清楚?

学生回答后,教师肯定地说明用字母表示可以做到这一点。然后提出:如果用字母a或b分别表示两个加数,怎样表示加法交换律?(同时说明a、b是拉丁字母,通常读作“ei”“bi”,不要按汉语拼音来读,并领读几遍。)

学生回答后,教师板书:a+b=b+a

说明:a和b可以表示0、1、2、3、……中的任意一个数;一个用数字表示的等式只能表示两个具体的数交换位置,和不变,不能表示任意的两个数交换位置,和不变,而用“a+b=b+a,就可以表示任意两个数相加,交换加数的位置,和不变。比如,“a+b=b+a”可以表示2+1=1+2,137+357=357+137,18+17=17+18等等。

接着教师提问:

“想一想我们在以前学过的哪些计算中用到了加法交换律?”

使学生明确以前学过的用交换加数的位置再加一遍的方法来验算加法,就是用加法交换律的。

5.做第48页的“做一做”。

第1题,让学生在方框里填上适当的数,订正时,说一说是根据哪个规律填写的。

第2题,验算的竖式可以直接写在原始的右边。

三、巩固练习

做练习十一的第2—4题。

1.第2题,要注意让学生清根据哪个运算定律来填数,对有困难的学生可以对照运算定律的结语及字母表达式帮助理解,对于运算定律的表述,只要求表达得清楚没有错误,不要求学生一字不差地背下来。

2.第3题,让学生根据运算定律来判断每个等式是不是符合运算定律的要求。如230+370=380+220,虽然左右两边的得数相等,但由于两边的加数不同,所以不符合加法交换律。又如,30+50+40=50+30+40,虽然是三个数相加,但是前两个加数交换了位置,加得的和不变,还是符合加法交换律的。

四、小结

教师:今天我们学习了加法的意义和加法的一个运算定律——加法交换律。谁能结合具体的题目说一说加法的意义和加法交换律的含义?

加法交换律3

设计说明

加法交换律的学习是在学生已经掌握了加法的意义,积累了大量的用交换两个加数的位置进行验算的知识经验的基础上进行教学的,因此,本节课的学习对于学生来说并不困难。本节课的教学教师注重唤醒学生的已有认知,借助归纳和演绎推理,引导学生自主发现加法交换律。具体设计如下:

1.创设情境,唤醒认知经验。

数学知识的学习是螺旋上升的,任何一个新知的学习都能在旧知的基础上找到生长点,因此,数学的学习实际就是同化和顺应的过程。新课伊始,教师为学生呈现“李叔叔骑车旅行”的生活化情境,并引导学生根据数学信息,借助已有的加法知识提出数学问题:李叔叔今天一共骑了多少千米?并提出不同的列式解答方法。学生在熟悉的情境中,自觉调动已有认知经验解决问题,使新知的学习植根于学生已有的知识基础上。

2.遵循教学主线,教给学生学习方法。

遵循这样一条教学主线:发现规律—验证规律—应用规律。在教学加法交换律时,先引导学生从解决情境图的实际问题中发现规律,再引导学生验证这个规律,最后应用规律来解决一些问题,这也是学习数学的一种很好的方法。学生如果能真正掌握这种方法,并能把这种方法应用到以后的学习生活中去,可以受益终生。

3.关注运算定律的形式化表达,培养学生的抽象能力和模型思想。

让学生用自己喜欢的方式把加法交换律表示出来,用文字、符号、字母都可以,并不加以限制,这样有利于培养学生的符号意识,提高学生的抽象概括能力,为以后学习用字母表示数打下基础,同时,也有助于学生发散性思维的训练。

课前准备

教师准备 多媒体课件

教学过程

⊙创设情境,导入新课

师:同学们,你们喜欢旅游吗?(喜欢)

师:你们打算去什么地方旅游呢?(生汇报)

师:看来喜欢旅游的同学还真不少,有谁骑车旅行过呢?(生举手表示)骑车旅行不仅能锻炼身体,还能开阔视野,给我们带来好心情。瞧,李叔叔正骑车旅行呢!(播放课件)

你从中获取了哪些信息?和你的同桌互相说一说。(同桌交流)

师:谁愿意把你获取的信息和大家分享一下?

预设

生1:李叔叔准备骑车旅行一个星期。

生2:李叔叔今天上午骑了40 km,下午骑了56 km。要求李叔叔今天一共骑了多少千米。

师:说得不错!今天我们就来解决这个问题。

设计意图:从创设贴近学生生活实际的情境出发,让学生观看情境图并自主搜集信息,可以培养学生看图搜集信息的能力。

⊙自主探究,寻找规律

(课件出示例1)

1.解决问题,发现规律。

(1)独立计算,汇报结果。

师:在练习本上算一算李叔叔今天一共骑了多少千米。(学生独立计算)

师:谁来汇报一下自己解决问题的方法和结果?

(生汇报,教师板书)

预设

生1:用李叔叔上午骑的路程加上他下午骑的路程就是他今天一共骑的路程。40+56=96(km)。

生2:用李叔叔下午骑的路程加上他上午骑的路程也是他今天一共骑的路程。56+40=96(km)。

(2)引导学生观察算式,比较这两种算法。(出示课堂活动卡)

师:请同学们观察这两个算式,说说你有什么发现。

(相同点:两个算式都可以求出李叔叔今天一共骑了多少千米;不同点:两个算式的加数交换了位置)

(3)思考:你能表示出这两个算式的关系吗?

[课件出示:40+56( )56+40]

师:想一想,( )里能填什么符号?(课件出示:=)

设计意图:引导学生观察,发现两种算法的相同点与不同点,从而确定这两个加法算式的关系,进而使学生对加法交换律有了感性认识,培养了学生的发现意识。

2.验证、总结加法交换律。

(1)思考:这一组算式交换了两个加数的位置,它们的和没有变,是不是任意两个数相加,都有这样的规律呢?谁能任意说出一个加法算式来验证一下呢?(18+17=17+18)

(2)验证。

师:这两个数相加符合这个规律,其余的数是不是也符合这个规律呢?请同学们在练习本上举几个例子并验证,然后在小组内交流一下。(小组内交流汇报,教师板书)

预设

生1:28+71=71+28,这两个算式的加数相同,只是交换了位置,它们的和都是99,所以这两个算式用等号连接。

生2:36+54=54+36,加数相同,位置不同,但是这两个算式的结果都是90,所以这两个算式用等号连接。

相关推荐

热门文档

20 528657