首页 > 学习资料 > 教案大全 >

平方根教案【汇集5篇】

网友发表时间 230017

【路引】由阿拉题库网美丽的网友为您整理分享的“平方根教案【汇集5篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

练习【第一篇】

P69练习 1、2

平方根优秀教案设计【第二篇】

教学目标:

知识与技能

了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。

过程与方法

理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。

情感、态度与价值观

体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。

教学重点理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。

教学难点会用平方根的概念求某些数的平方根,并能用根号加以表示。

教具准备小黑板 科学计算器

教学过程

一、导入

1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣。

2、板书:实数 平方根

二、新授

(一)探求新知

1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?

2、引入“无理数”的概念:像(……)这样无限不循环的小数就叫做无理数。

3、你还能举出哪些无理数?(,)、、1/3是无理数吗?

4、有理数和无理数统称为实数。

(二)知识归纳:

1、板书:平方根

2、李老师家装修厨房,铺地砖平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(米)

3、怎么算?每块地砖的面积是: 120=平方米。

由于=,因此面积为平方米的正方形,它的边长为米。

4、练习:

由于( )=400,因此面积为400平方厘米的正方形,它的边长为( )厘米。

5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。(也可叫做二次方根)

例如22=4,因此2是4的一个平方根;62=36,因此6是36的一个平方根。

6、说一说:9,16,25,49的一个平方根是多少?

(三)探求新知:

1、4的平方根除了2以外,还有别的数吗?

2、学生探究:因为(-2)2=4,因此-2也是4的一个平方根。

3、除了2和-2以外,4的平方根还有别的数吗?(4的平方根有且只有两个:2与-2。)

4、结论:如果r是正数a的一个平方根,那么a的平方根有且只有两个:r与-r。

5、我们把a的正平方根叫做a的算术平方根,记作,读作:“根号a”;

把a的负平方根记作-。

6、0的平方根有且只有一个:0。 0的平方根记作,即=0。

7、负数没有平方根。

8、求一个非负数的平方根,叫做开平方。

(四)巩固练习:

1、分别求下列各数的平方根:36,25/9,。

(6和-6,5/3和-5/3,和-)(也可用号表示)

2、分别求下列各数的算术平方根:100,16/25,。 (10,4/5,)

三、小结与提高:

1、面积是196平方厘米的正方形,它的边长是多少厘米?

2、求算术平方根:81,25/144,

《平方根》教案【第三篇】

教学目标

1、使学生了解数的平方根的概念和性质。

2、使学生能够根据平方根的定义正确的求出一非负数的平方根。

3、提高学生对数的认识。

教学重点

平方根的概念和求法

教学难点

非负数平方根的个数问题

教具学具

投影仪

教学方法

讲练结合

(补 标 小 结)

教 学 过 程

( 展 标 施 标 …差异网 …查 标)

教 学 内 容

教师活动

学生活动

一、引入新课

以正方形的面积和边长的关系引入平方根的概念

展标

投影:

1、已知一正方形面积为4cm2,则它的边长为---------cm

2、已知一正方形面积为2cm2则它的边长为---------cm

这两个小题有什么共同特点?

这就是我们今天要来研究的一个新的概念——平方根

二、施标

1、平方根的定义:

如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)

求一个数的平方根的平方根的运算叫做开平方

2、平方根的性质

(1)一个正数有几个平方根?

(2)0有几个平方根

(3)一个负数有几个平方根?

3、平方根的表示方法

填空(投影)

1、( )2=9

2、( )2=

3、( )2= 1625

4、( )2=0

5、( )2=

这五个小题形如x2=a

X叫做a的平方根(二次方根)

板书:

如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)

求一个数的平方根的运叫做开平方

提问:

是不是每个数都有平方根?

如果有的话,有几个?它们之间是什么关系?

讨论总结

1、一个正数有两个平方根,它们互为相反数。

2、0只有一个平方根,就是0本身。

3、负数没有平方根。

平方根表示方法练习

4、求一个非负数的平方根

例1、求下列各数的平方根?

(1)361

(2)14449

(3)

(4)23

读作:正、负二次根号下a

a的`正的平方根:+√a

a的负的平方根:-√a

投影练习题:

1、用正确的符号表示下列各数的平方根

① 26、②247、③

④3、⑤783

2、+√7表示什么意思?

3、-√7表示什么意思?

4、±√7表示什么意思?

引导学生回答并板书解题步骤:

解:

(1)∵(±19)2=361

∴361的平方根为

±√361=±19

(2)∵(±127)2=14449

∴14449的平方根为±√14449=±19

(3)∵(±)2=

∴的平方根为

±√=±

(4)23的平方根为±√23

(±19)2=361

(±127)2=14449

(±)2=

(±√23)2=23

三、查标

四、小结

《平方根》教案【第四篇】

教学目标

1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;

3、通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。

教学难点

根据算术平方根的概念正确求出非负数的算术平方根。

知识重点

算术平方根的概念。

教学过程(师生活动)

设计理念

情境导入 同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子。因为这一天,神舟五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示神舟五号飞船升空时的画面)。那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度 (米/秒)而小于第二宇宙速度: (米/秒)。 、 的大小满足 。怎样求 、 呢?这就要用到平方根的概念,也就是本章的主要学习内容。

这节课我们先学习有关算术平方根的概念。

请看下面的问题。 神舟五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀。此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣。这里的计算实际上是已知幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路。

提出问题

感知新知 多媒体展示教科书第160页的问题(问题略),然后提出问题:

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值。

练习:教科书第160页的填表。 练习:教科书第160页的填表。这个问题抽象成数学问题就是已知正方形的面积求正方形的边长,这与学生以前学过的

已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。

归纳新知 上面的问题,可以归纳为已知一个正数的平方,求这个正数的问题。实际上是乘方运算中,已知一个数的指数和它的幂求这个数。

一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根。a的算术平方根记为 ,读作根号a,a叫做被开方数。规定:0的算术平方根是0。

也就是,在等式 =a (x0)中,规定x = 。

思考:这里的数a应该是怎样的数呢?

试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来。

想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如 表示25的算术平方根,因为 也可以写成 ,读作二次根号a。

算术平方根的概念比较抽象,原因之一是学生对石这个新

的符号的理解要有一个过程。通过此问题,使学生对符号而表示的具体含义有更具体、更深刻的认识。

应用新知 例。(课本第160页的例1)求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)0。0001

建议:首先应让学生体验一个数的。算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x,使 =100,因为 例题的解答展示了求数的算术平方根的思考过程。在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果。

探究拓展 提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受 的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。

教科书在边空提出问题小正方形的对角线的长是多少,

这是为在10。3节介绍在数轴上画出表示 的点做准备。

小结与作业

课堂小结

提问:1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根?

布置作业 3、 必做题:课本第167页习题10。1第1、2、3题;168页第11题。

4、 备5、 选题:

(1)判断下列说法是否正确:

i。 是25的算术平方根;

ii。 一6是 的算术平方根;

iii。 0的算术平方根是0;

iv。 0。01是0。1的算术平方根;

⑤一个正方形的边长就是这个正方形的面积的算术平方根。

(2)下列各式哪些有意义,哪些没有意义?

①— ② ③ ④

(3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。

在本节的第一个探究栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算术平方根的必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略。特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题。

通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣的。教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练。

通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备。

探究:(课本第69页【第五篇】

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受 的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。

相关推荐

热门文档

20 230017