首页 > 学习资料 > 教案大全 >

《平方根》教案精编3篇

网友发表时间 1250970

【前言导读】这篇优秀教案“《平方根》教案精编3篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

《平方根》教案1

教学设计示例

一.教学目标

1.会用计算器求数的平方根;

2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;

3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。

二.教学重点与难点

教学重点:用计算器求一个正数的平方根的程序

教学难点:准确用计算器求解一个正数的平方根

三.教学方法

讲练结合

四.教学手段

实物投影仪,计算器

五.教学过程

在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,, 等数的平方根,但对于如:2,3, ,的平方根就不能像前面的数那样容易求解了,只能用根号表示。具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。

复习提问学生有关乘方如何用计算器运算的步骤。熟悉计算器基本键的功能。

现在讲计算器打开,按 键,屏幕上显示“0”此时可以进行运算。

例1.用计算器求 的值。

分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。

解:用计算器求 的步骤如下:

小结:在求解 的过程中,由于要用到 这个键上方 的功能,这就需要用上方标有“2F”的键来转换。

例2.用计算器求 的值。(保留4个有效数字)

解:用计算器求 的步骤如下:

小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。

例3.用计算器求 的'值。

解:用计算器求 的步骤如下:

因为计算结果要求保留4个有效数字,

例4.用计算器求的平方根。

解:用计算器求平方根的步骤如下:

因为计算结果要求保留4个有效数字,

小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。

例5.用计算器求值:

分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。

解:按键的顺序是:显示

练习:

求下列正数的算术平方根:

(1)49 ; (2); (3); (4)5 ; (6)260;

(7) ; (8)

六.总结

利用计算器求解既快又精确,操作时要严格按照步骤执行。特别注意要用到第二功能键,首先要先按“2F”在按需要的键。由于各种计算器的键的功能各不相同,因此要注意操作顺序,查看说明书熟悉各键的具体功能。

八.作业

教材 A组1、2、3

九、板书设计

《平方根》教案2

学习目标:

1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。

学习重点:

了解平方根的概念,求某些非负数的平方根

学习难点:

了解被开方数的非负性;

学〔〕习过程:

一、 学习准备

1、我们已经学习过哪些运算?它们中互为逆运算的是?

答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。

2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。

32 = ( ) ( )2 = 9

(—3)2= ( ) ( )2 =

( )2= ( ) ( )2 = 0

( )2 =( )

02 =( ) ( )2 = —4

3、左边算式已知底数、指数 求幂 ,右边算式已知幂、指数 求底数

一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。

即如果X2=a,那么 叫做 的平方根。请按照第3页的举例你再举两个例子说明:

叫做开平方,平方与 互为逆运算

4、观察上面两组算式,归纳一个数的平方根的性质是:

一个正数 有两个平方根,它们互为相反数;

零 有一个平方根,它是零本身;

负数 没有平方根。

交流:(1) 的平方根是什么?

(2)的平方根是什么?

(3)0的平方根是什么?

(4)—9的平方根是什么?

5、平方根的表示方法

一个正数a有两个平方根,它们互为相反数。

正数a的`正的平方根,记作

正数a的负的平方根,记作

这两个平方根合在一起记作

如果X2=a,那么X= ,其中符号 读作根号,a叫做被开方数

这里的a表示什么样的数? a是非负数

二、合作探究

1、判断下面的说法是否正确:

1)—5是25的平方根; ( )

2)25的平方根是—5; ( )

3)0的平方根是0 ( )

4)1的平方根是1 ( )

5)(—3)2的平方根是—3 ( )

6) —32的平方根是—3 ( )

2、阅读课本第4页例题1,按例题格式判断下列各数有没有平方根,若有,求其平方根。若没有,说明为什么。

(1) (2) (3) —100 (4) (—4)2

(5) (6) (7) 10 (8) 5

三、学习体会:

本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?

四、自我测试

1、检验下面各题中前面的数是不是后面的数的平方根。

(1)12 , 144 ( ) (2) , ( )

(3)102 ,104 ( ) (4)14 ,256 ( )

2、选择题(1) 的平方根是 ( )

A、 B、 C、 D、

(2)因为()2 = 所以( )

A、 是 的平方根。 B、是的3倍。

C、 是 的平方根。 D、不是的平方根。

3、判断下列说法是否正确:

(1)—9的平方根是—3; ( )

(2)49的平方根是7 ; ( )

(3)(—2)2的平方根是 ( )

(4)—1 是 1的平方根; ( )

(5)若X2 = 16 则X = 4 ( )

(6)7的平方根是49。 ( )

4、求下列各数的平方根

1)81 2)0。25 3) 4)(—6)2

5、求下列各式中的x:

(1) x=16 (2) x= (3) x=15 (4) 4x=81

思维拓展:

1、一个数的平方等于它本身,这个数是 一个数的平方根等于它本身,这个数是

2、若3a+1没有平方根,那么a一定 。 3、若4a+1的平方根是5,则a= 。

4、一个数x的平方根等于m+1和m—3,则m= 。x= 。

5、若|a—9|+(b—4)=0,则ab的平方根是 。

6、熟背1至20的平方的结果。

7、分别计算 32 ,34 ,46 ,58 ,512 ,10 的平方根,你能发现开平方后幂的指数有什么变化吗?

学情分析:3

知识背景:学生已经学会了乘方运算。

能力背景:能借助乘方运算解决其逆运算-----开平方

预测目标:1.能熟练地求一个正数的平方根。

2、知道乘方与开方的联系与区别

四、教具准备: 多媒体

相关推荐

热门文档

20 1250970