解方程优秀4篇
【导言】此例“解方程优秀4篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
解方程教案【第一篇】
设计说明
本节课的教学任务是使学生了解等式性质(二),并会用这个性质解方程。由于学生在探究等式性质(一)时已经具备了一定的学习经验,因此本节课的教学设计主要突出以下两点:
1、在操作实践中验证等式性质(二)
在教学中,通过学生的亲身实践,边操作边观察边总结,使等式性质(二)顺利地生成,同时让学生对此有直观的理解,强化学习效果。
2、通过直观图理解解方程的过程
在指导学生利用等式性质(二)解方程时,充分发挥了直观图的作用,加深学生对解方程的过程和依据的了解,提高学习效率。
课前准备
教师准备:
PPT课件
学生准备:
天平,若干个贴有标签的砝码
教学过程
猜想导入
师:谁能说出我们学过的等式性质?
[学生回顾上节课学习的内容,并汇报:等式两边同时加上(或减去)同一个数,等式仍然成立]
引导学生猜想:等式两边都乘同一个数(或除以同一个不为0的数),等式是否仍然成立呢?思考并在小组内交流自己的想法,然后汇报。
设计意图:学生已经学过了等式两边都加上(或减去)同一个数,等式仍然成立的性质。上课伊始,先复习所学知识,并由此进行合理猜想,再自然地引入新课,直奔主题。
动手验证,探究规律
师:大家的猜想对不对呢?我们来验证一下。
1、(课件演示,学生操作)天平左侧的砝码重x克,右侧放5克的砝码,这时天平的指针指向正中央,说明了什么?你知道左侧的砝码重多少克吗?怎样用等式表示?(说明天平平衡,左侧的砝码重5克,x=5)
2、如果左侧再加上2个x克的砝码,右侧再加上2个5克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,3x=3×5)
3、如果左侧有2个x克的砝码,右侧有2个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x=20)
4、如果左侧拿走一个x克的砝码,右侧拿走一个10克的`砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x÷2=20÷2)
5、通过上面的游戏,你发现了什么?
小结:等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。
设计意图:利用课件的演示和动手操作,让学生体会天平两侧的变化情况,加深学生对等式的理解,体会等式的变化规律。
解方程
1、(课件出示教材70页方程:4y=2000)
师:你们能求出这个方程的解吗?
(学生先独立尝试,然后小组交流,并汇报)
预设
方法一:想?×4=2000,直接得出答案。
方法二:用等式性质解方程,方程的两边都除以4,从而得出答案。
师:为什么方程的两边都除以4,依据是什么?
预设
生:依据是等式的两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。
让学生说出用等式性质解方程的过程。
解方程【第二篇】
一、学习内容分析
方程的意义选自人教版五年级上册,主要内容是方程的定义,属于数与代数领域。方程的意义是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解方程和列方程解答应用题打下良好的基础。
教材的编写意图是从等式引入,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克,然后在杯中倒入水,并设水重x克。通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。
二、学习者分析
五年级的学生已经掌握了整数、小数、分数的认识,能够熟练计算整数、小数四则运算。学生对数与代数的知识和经验已经积累到相当的程度,需要对初一年级的数学知识和数学思想进行学习。但是方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。
三、教学过程
一、创设情境,引入课题
1.课件呈现,认识天平:
出示天平同学们,见过它吗?你们知道怎么用吗?
情境
师生活动学生回答,教师总结
归纳左右平衡,也就说明左右相等了
追问用一个什么式子表示
2.体验感受,观察积累: 问题这里有一个梨和一个苹果,如果把他们分别放在天平两边的托盘里,猜想一下会有几种情况发生?
师生活动学生个别回答,教师根据学生的回答板书:
(1) 梨的质量大于一个苹果的质量天平向左倾斜;
(2) 梨的质量等于一个苹果的质量天平保持平衡;
(3) 梨的质量小于一个苹果的质量天平向右倾斜 追问因为不知道不确定质量所以结果就会出现不同的结果。现在我告诉你它们的质量:梨60克,苹果110克,此时天平会是什么状态?能用一个式子表示出这一状态吗?
师生活动点名让学生个别回答,教师及时板书:60<110
教师评价真好!数学语言表达就是简练。
追问师:如果在天平左边梨质量是a
克,用数学语言把你们认为天平的状态表达出来,写在本上。
师生活动学生独立完成,教师巡视。
板书60+a<110、60+a=110、60+a>110
追问这几个式子各表示什么情况?
归纳你看,简单的几个数学算式就表达了三种不同的情况,这就是数学语言的简约美。
3.观察算式,揭示课题
追问看看哪个式子表示相等?一起读出式子
追问仔细观察这个算式,你发现这个算式和我们以前学过的有什么不一样的地方吗?
评价真善于观察,今天我们就一起来学习这类问题 板书:简易方程
二、自主探究,形成概念
1.再举实例,铺垫孕伏
问题还是这架天平,刚才你们发现了平衡,现在教师这里有一杯500克的果汁,和一罐125克的牛奶,如果把它们分别放在天平两边会出现什么情况?
师生活动学生回答,教师补充。
追问那么你能让这架天平平衡吗?也可以用数学算式表达。
学请预设
方案1:在右边再放3罐。
追问可以吗?谁能说清楚?
板书500=125×4或500=125+125+125+125
归纳这是一种策略,改变右边的质量。受他的启发还有别的办法的吗? 方案2:刚才我还听有的同学说喝375克就行。大家说行吗?不过还真的有人喝了一口,不过这一口到底是多少我们不知道,怎么办? 师生活动教师引导学生用字母表示,用数学算式表示说明,写在本子上。
师生活动教师巡视,抽有代表性的同学上来板书
板书500-x<125, 500-x="">125
追问哪个式子表示了天平左右两边平衡了?
500-x=125
2.观察式子,归纳定义
问题仔细观察下列式子,你发现了什么?
(1)500=125×4或500=125+125+125+125
(2)500-x=125
(3)60+a=110
师生活动学生回答,教师补充
归纳含有未知数的等式叫做方程。板书
3.分析定义,理解概念
问题你认为判断方程需要几个条件?
师生活动教师从方程的定义,引导学生回答:
(1)表示相等的式子。
(2)必须含有字母(未知数)。
三、牛刀小试,巩固概念
1.试一试,观察天平判断是否可以写出方程,说明理由。
2.做一做:下面哪些是式子是方程?
3.举一举:你会自己举出一些是方程的式子活例子
(1)小红的年龄是x岁,老师比小明大30岁,今年老师的年龄是38岁。
(2)逐个呈现3个足球,每个a元,共花180元。你能用方程表示吗?
(1)小芳一个星期共跑了,每天跑s米。
(2)一盒水果糖共a颗,平均分给25个小朋友,每人得3颗,正好分完。
(3)小芳集邮共60张,小明集邮共48张。小芳给了小明x张后两人的集邮张数一样多。
四、总结提升
数学史:三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中记载了用一组方程解决实际问题的史料。直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
师:同学们,今天这节课上大家都积极的进行了思考,从中你学到了什么?还想知道些有关方程的哪些知识?
解方程【第三篇】
教学目标:
1、学会利用等式性质1解方程;
2、理解移项的概念;
3、学会移项。
教学重点:
利用等式性质1解方程及移项法则;
教学难点:
利用等式性质1来解释方程的变形。
教学准备:
1、投影仪、投影片。
2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。
教学过程:
(一)引入新课:
1、 上节课的想一想引入新课:等式和方程之间有什么区别和联系?
方程是等式,但必须含有未知数;
等式不一定含有未知数,它不一定是方程。
2、下面的一些式子是否为方程?这些方程又有何特点?
① 5x+6=9x
②3x+5
③7+5×3=22
④4x+3y=2
由学生小议后回答:①、④是方程。
分析这些方程得:
①等式两边都是一次式或等式一边是一次式,另一边是常数
②这些方程中有的含一个未知数,也有的含两个未知数。
我们先来研究最简单的(只含有一个未知数的)的一元一次方程。
3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。
注意:一次方程可以含有两个或两个以上的未知数:如上例的④。
4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。
5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)
① 2x+3=11②y2=16③x+y=2④3y-1=4y
6、什么叫方程的解?怎样解方程?
关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程
(二)、讲解新课:
1、 等式性质1:
出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。
强调关键词:"两边"、"都"、"同"、"等式"。
2、 利用等式性质1解方程:
x+2=5
分析:要把原方程变形成x=?只要把方程两边同时减去2即可。
注意: 解题格式。
例1 解方程5x=7+4x
分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?
(解略)
解完后提问:如何检验方程时的计算有没有错误?(由学生回答)
只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)
观察前面两个方程的求解过程:
x+2=5 5x=7+4x
x=5-2 5x-4x=7
思考:⑴把+2从方程的一边移到另一边,发生了什么变化?
⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)
3、 移项:
从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。
注意:
①移项要变号;
②移项的实质:利用等式性质1对方程进行变形。
例2 解方程:3x+4=2x+7
解:移项,得3x-2x=7-4,
合并同类项,得x=3。
∴x=3是原方程的解。
归纳:
①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;
②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;
③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。
练习:书本105页 1(口答),2(板演),想一想。
(三)、课堂小结:
①什么是一次方程,一元一次方程?
②等式性质1(找关键词);
③移项法则;
④应用等式性质1的注意点(例2归纳的三条)。
(四)、布置作业:见作业本。
解方程教案【第四篇】
教学目标:
1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。
2、利用探索发现的等式的性质,解决简单的方程。
3、经历了从生活情境的方程模型的建构过程。
4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。
教学重难点:
重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。
难点:推导等式性质(一)。
教学准备:
一架天平、课件及班班通
教学过程:
一、创设情境,以情激趣
师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?
学生讨论纷纷。
师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?
二、运用教具,探究新知
(一)等式两边都加上一个数
1、课件出示天平
怎样看出天平平衡?如果天平平衡,则说明什么?
学生回答。
2、出示摆有砝码的天平
操作、演示、讨论、板书:
5=5 5+2=5+2
X=10 X+5=15
观察等式,发现什么规律?
3、探索规律
初次感知:等式两边都加上同一个数,等式仍然成立。
再次感知:举例验证。
(二)等式两边都减去同一个数
观察课件,你又发现了什么?
学生汇报师板书:
X+2=10
X+2-2=10-2
X =8
(三)运用规律,解方程
三、巩固练习
1、完成课本68页“练一练”第2题
先说出数量关系,再列式解答。
2、小组合作完成69页“练一练”第3题。
完成后汇报,集体订正。
四、课堂小结
这节课你学到了什么?学生交流总结。
板书设计: 解方程(一)
X+2=10
解: X+2-2=10-2 ( 方程两边都减去2)
X =8