解方程【汇集4篇】
【序言】由阿拉题库最美丽的网友为您整理分享的“解方程【汇集4篇】”学习资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
解方程【第一篇】
教学课题:解方程
教学内容:教材第67—68页例1、2.
教学目标:
1、 知识目标: 结合具体图例,根据等式不变的规律会解方程。
2、 能力目标:掌握解方程的格式和写法。
3、 情感目标:进一步提高学生分析、迁移的能力。 教学重点:掌握解方程的`方法。 教学难点; 掌握解方程的方法。 教学方法:质疑引导。 教学资源:课件、投影仪 教学流程:
作业设计:
1、 必做题:教材第67页做一做第一题
2、 选做题:解方程:X+=
解方程【第二篇】
一、教学目标:
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
二、课时安排:
1课时
三、教学重点:
能用等式的性质解简单的方程。
四、教学难点:
了解等式的性质。
五、教学过程
(一)导入新课
故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?
(板书:大象的体重=石头的重量)
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课
探究一:学习等式性质
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。
(三)重点精讲。
探究二:学习解方程
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=12 23+x=45
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x – 19 = 2
(2)x - =
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
解方程【第三篇】
《解方程》中的典型错例分析
最近一段时间我们认识了方程,学习理解了等式的性质,能根据等式的性质解简易方程。
现象
在教学完学生利用等式性质解简易方程后,发现学生出现的问题有一、格式上的:1.会忘写“解”字;
2.上下等号没有对齐;
二、典型错误:1.未知数在减数位置的时候,如18-2x=16;
解:18-2x+18=16+18
2x=34
2x÷2=34÷2
x=17
2.未知数在除数位置的时候,如28÷x=7。
解:28÷x×28=7×28
x=216
分析
格式书写问题原因:解方程是学生刚接触的新鲜知识,学生在知识经验的储备上明显不足,它的书写格式也是新的,和原先的等式计算完全不同,所以学生会受原先已有知识的负迁移而写错,因此,需要一个强调的过程。
典型错误分析:由于利用等式性质解方程时,其他题型(如,未知数在加数位置、未知数在因数位置、未知数在被减数位置)的时候,我们都先是把方程左边的数去掉。如x+12=36,我们就先在方程两边同时减去12,x+12-12=36-12,得x=24;9x=72就现在方程两边同除以9,9x÷9=72÷9,得x=8;x-19=8就现在方程两边同时加上19,x-19+19=8+19,得x=27这也比较符合孩子的思维过程。因此学生在解决未知数在除数和减数位置时,受这样的负迁移也想把左边不含未知数的数去掉,且这两类题在利用等式性质解时是要先把左边的未知数消去,如18-2x=16是先要现在方程左右两边同时加上2x,18-2x+2x =16+2x,得18=16+2x再去解,这样的逆思维学生不太容易接受,因此这两类题错误很多。
解决策略
基于以上原因分析,我调整了教学,在教学例3时。先让学生尝试用多种方法来解决,并说明这样解方程的依据是什么。结果孩子们出现了这3种较典型的解法。
① 20-x=9 ② 20-x=9 ③ 20-x=9
解20-x+x=9+x 解x=20-9 解20=9+x
20=9+x x=11 20-9=9+x-9
x=11
20-9=9+x-9
x=11
利用等式性质求解 根据“差=被减数-减数”求解
解释1:移项
解释2:根据“被减数=差+减数”解
再让学生说说你认为那种方法最简便?这时几乎所有同学都认为第二种解法是最简洁方便的,t:既然大家都这么认为我们再来看看这种方法是怎样解的。教师再请学生分析讲解一遍,同桌再说一说。
最后,出示相同类型题请学生尝试用这种方法解决。
未知数在除数位置的时候教学方法同上。
我发现这样教学过后,孩子们再遇到这样的方程时都会选择用关系式去解决,正确率也很高。
解方程【第四篇】
一、学习内容分析
方程的意义选自人教版五年级上册,主要内容是方程的定义,属于数与代数领域。方程的意义是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解方程和列方程解答应用题打下良好的基础。
教材的编写意图是从等式引入,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克,然后在杯中倒入水,并设水重x克。通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。
二、学习者分析
五年级的学生已经掌握了整数、小数、分数的认识,能够熟练计算整数、小数四则运算。学生对数与代数的知识和经验已经积累到相当的程度,需要对初一年级的数学知识和数学思想进行学习。但是方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。
三、教学过程
一、创设情境,引入课题
1.课件呈现,认识天平:
出示天平同学们,见过它吗?你们知道怎么用吗?
情境
师生活动学生回答,教师总结
归纳左右平衡,也就说明左右相等了
追问用一个什么式子表示
2.体验感受,观察积累: 问题这里有一个梨和一个苹果,如果把他们分别放在天平两边的托盘里,猜想一下会有几种情况发生?
师生活动学生个别回答,教师根据学生的回答板书:
(1) 梨的质量大于一个苹果的质量天平向左倾斜;
(2) 梨的质量等于一个苹果的质量天平保持平衡;
(3) 梨的质量小于一个苹果的质量天平向右倾斜 追问因为不知道不确定质量所以结果就会出现不同的结果。现在我告诉你它们的质量:梨60克,苹果110克,此时天平会是什么状态?能用一个式子表示出这一状态吗?
师生活动点名让学生个别回答,教师及时板书:60<110
教师评价真好!数学语言表达就是简练。
追问师:如果在天平左边梨质量是a
克,用数学语言把你们认为天平的状态表达出来,写在本上。
师生活动学生独立完成,教师巡视。
板书60+a<110、60+a=110、60+a>110
追问这几个式子各表示什么情况?
归纳你看,简单的几个数学算式就表达了三种不同的情况,这就是数学语言的简约美。
3.观察算式,揭示课题
追问看看哪个式子表示相等?一起读出式子
追问仔细观察这个算式,你发现这个算式和我们以前学过的有什么不一样的地方吗?
评价真善于观察,今天我们就一起来学习这类问题 板书:简易方程
二、自主探究,形成概念
1.再举实例,铺垫孕伏
问题还是这架天平,刚才你们发现了平衡,现在教师这里有一杯500克的果汁,和一罐125克的牛奶,如果把它们分别放在天平两边会出现什么情况?
师生活动学生回答,教师补充。
追问那么你能让这架天平平衡吗?也可以用数学算式表达。
学请预设
方案1:在右边再放3罐。
追问可以吗?谁能说清楚?
板书500=125×4或500=125+125+125+125
归纳这是一种策略,改变右边的质量。受他的启发还有别的办法的吗? 方案2:刚才我还听有的同学说喝375克就行。大家说行吗?不过还真的有人喝了一口,不过这一口到底是多少我们不知道,怎么办? 师生活动教师引导学生用字母表示,用数学算式表示说明,写在本子上。
师生活动教师巡视,抽有代表性的同学上来板书
板书500-x<125, 500-x="">125
追问哪个式子表示了天平左右两边平衡了?
500-x=125
2.观察式子,归纳定义
问题仔细观察下列式子,你发现了什么?
(1)500=125×4或500=125+125+125+125
(2)500-x=125
(3)60+a=110
师生活动学生回答,教师补充
归纳含有未知数的等式叫做方程。板书
3.分析定义,理解概念
问题你认为判断方程需要几个条件?
师生活动教师从方程的定义,引导学生回答:
(1)表示相等的式子。
(2)必须含有字母(未知数)。
三、牛刀小试,巩固概念
1.试一试,观察天平判断是否可以写出方程,说明理由。
2.做一做:下面哪些是式子是方程?
3.举一举:你会自己举出一些是方程的式子活例子
(1)小红的年龄是x岁,老师比小明大30岁,今年老师的年龄是38岁。
(2)逐个呈现3个足球,每个a元,共花180元。你能用方程表示吗?
(1)小芳一个星期共跑了,每天跑s米。
(2)一盒水果糖共a颗,平均分给25个小朋友,每人得3颗,正好分完。
(3)小芳集邮共60张,小明集邮共48张。小芳给了小明x张后两人的集邮张数一样多。
四、总结提升
数学史:三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中记载了用一组方程解决实际问题的史料。直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
师:同学们,今天这节课上大家都积极的进行了思考,从中你学到了什么?还想知道些有关方程的哪些知识?