有理数的乘法教案【最新4篇】
【序言】由阿拉题库最美丽的网友为您整理分享的“有理数的乘法教案【最新4篇】”教案资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
有理数的乘法教案【第一篇】
一、学习目标:
1. 熟练掌握有理数的乘法法 则
2. 会运用乘法运算率简化乘法运算。
3. 了解互为倒数的意义,并会求一个非零有理数的倒数
二、学习重点:探索有 理数乘法运算律
学习难点:运用乘法运算律简化计算
三、学习过程:
(一)、情境引入:
1、复习有理数的乘法法则(两个因数、两个以上的因数),并举例说明。
2、在含有负数的乘法运算中,乘法交换律,结合律和分配律还成立吗?
观察 下列各有理数乘法,从中可得到怎样的`结论?
(1)(-6)(-7)= (-7)(-6)=
(2)[( -3)(-5)]2 = (-3)[(-5)2]=
(3)(-4)(- 3+5)= (-4 )(-3)+(-4)5=
3、请再举几组数试一试,看上面所得的结论是否成立?
(二)、新课讲解:
有理数乘法运算律
交换律 ab =ba
结合律 ( ab)c=a(bc)
分配律 a(b+c)=ab+ac
例1.计算:
(1)8(- )(-) (2)
(3)( )(-36) (4)
例2.计算
(1)8 (2)(4)( ) (3)( )( )
观察例2中的三个运算, 两个因数有什么 特点?它们的乘积呢?你能够得到什么结论?
(三)、巩固练习:
1、运用运算律填空。
(1)-2-3=-3(_____)。
(2)[-32](-4)=-3[(______)(______)]。
(3)-5[-2 +-3]=-5(_____)+(_____)-3
2、选择题
(1)若a0 ,必有 ( )
A a0 B a0 C a,b同号 D a,b异号
(2)利用分配律计算 时,正确的方案可以是 ( )
A B
C D
3、运用运算律计算:
(1)(-25)(-85)(-4) (2) 14-12-1816
(3)6037-6017+6057 (4)18-23+1323-423
(5)(-4)(-) (6)(- )(-2 )
(7)(- + - - )(-20); (8)(-)()+(-)(-)
四、课堂小结:
通过本节课你学到了哪些知识?你 达成学习目标了吗?
五、作业布置:
课本第42页习题 第3题
数学评价手册
六 、学后记/教后记
有理数的乘法【第二篇】
教学目标
1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2.两数相乘时,确定符号的依据是“同号得正,异号得负”。绝对值相乘也就是小学学过的算术乘法。
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.
5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
教学设计示例
有理数的乘法(第一课时)
教学目标
1.使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过有理数的乘法运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法法则的理解。
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2).
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米。
问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数。
这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)
把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0.
继而教师强调指出:
“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”。
用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了。
因此,在进行有理数乘法时,需要时时强调:先定符号后定值。
三、运用举例,变式练习
例1 计算:
例2 某一物体温度每小时上升a度,现在温度是0度。
(1)t小时后温度是多少?
(2)当a,t分别是下列各数时的结果:
①a=3,t=2;②a=-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教师引导学生检验一下(2)中各结果是否合乎实际。
课堂练习
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);
2.口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数。+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.
3.当a,b是下列各数值时,填写空格中计算的积与和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
5.判断下列方程的解是正数还是负数或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小结
今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”。
五、作业
1.计算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-); (5)-×(-); (6)-×(-).
2.计算:
3.填空(用“>”或“<”号连接):
(1)如果 a<0,b<0,那么 ab ________0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0时,那么a ____________2a;
(4)如果a<0时,那么a __________2a.
探究活动
问题:桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?
答案:“±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下。道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的。
道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言。
有理数的乘法【第三篇】
教材版本:人民教育出版社年级:七年级课题:第一章 课题 有理数的乘法教学设计:
课题:有理数的乘法
(第一课时)
海南文昌华侨中学 郑鼐庆一、教学目标⒈知识目标①使学生在了解乘法的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性。②会进行有理数乘法运算③了解有理数的倒数定义,会求一个数的倒数⒉能力训练目标①经历探索有理数乘法法则,发展,观察,归纳,猜想,验证的能力以及培养学生的语言表达能力 ②提高学生的运算能力⒊情感要求:通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。二、教学设想(1)本节课在引入部分利用回顾旧知为巩固加法法则也为总结乘法法则设台阶,在探索新知时利用数轴上蜗牛运动的例子激发学生的兴趣,使学生能在兴趣的指引下逐步开展探究,在例子中把表示具有相反意义的量的正负数在实际问题中求积的问题与小学算术乘法相结合,通过小组讨论合作学习的方式得出结论。(2)在归纳法则的过程中,既培养学生的概括能力,观察能力及口头表达能力,也让学生通过归纳体验从特殊到一般,从具体到抽象的过程,使他们既学会发现,又学会总结。通过例2的气温变化问题和练习中的降价销售问题,引导学生关注身边的数学,体现数学来源于实践又服务于实践的思想。(3)在练习设计与作业布置中体现分层次教学的要求,让不同层次的学生都能主动参与并能得到成功的体验。三、教材分析 本节课主要内容是有理数的乘法运算。教科书首先借助数轴研究有理数的乘法,引入有理数乘法的法则,并通过例子说明如何运用法则进行运算。然后从具体运算的例子出发,指出乘法的运算律对有理数同样适用。四、 重点、难点重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;难点:有理数乘法中的符号法则。五、教学方法 通过回顾旧知,引出要探索的内容,引导学生积极探索。教学环节的设计与展开,以问题解决为中心,是教学过程成为在教师指导和启发下的一种自主探索的学习活动过程,在探索后经小组合作,尝试练习,总结自己的观点。六、教具准备三角板,彩色粉笔七、教学过程
教师活动
学生活动
设计意图一复习旧知,导入新课计算: , , , , 我们已经熟悉正数及0的乘法运算,引入负数以后,怎样进行有理数的乘法运算呢?思考并完成计算复习巩固小学学过的乘法运算。在乘法运算中引入负数,让学生与小学学过的乘法比较,发现不同之处,引起思考。二探索新知引导学生探索有理数乘法法则问题:一只蜗牛沿直线l爬行, 它现在的位置恰好在点o上。 我们规定:向左为负,向右为正,现在前为负,现在后为正看看它以相同速度沿不同方向运动后的情况吧1.问题 (1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置?
可以表示为 .解:(+2)×(+3)=6(厘米) ① 答:向右了6厘米。思考与回顾如何用正负数表示具有相反意义的量根据教师的分析和引导,列出式子。利用蜗牛爬行探究显得自然亲切,符合七年级学生的心理特点,易引起学生的学习兴趣。同时使学生明确相反意义的量的表示方法,为下面的学习作铺垫。(2) 如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?可以表示为
解:(—2)×(+3)=-6(厘米) ②
答:向右-6厘米(即向左6厘米).
(3) 如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?可以表示为
解:(+2)×(-3)=-6(厘米) ③
答:向右-6厘米(即向左6厘米).(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置?
可以表示为 解:(-2)×(-3)=6(厘米) ④ 答:向右了6厘米。(5)如果它以每分0cm的速度向左爬行,3分钟前它在什么位置?可以表示为 解:0×(-3)=0(厘米) ⑤答:原地不动。
倾听,
思考,
并列式借助数轴探讨有理数的乘法法则,学生容易接受,激发学生学习兴趣,提高数型结合思想。由上可知(1)(+2)× (+3)= ; (2)(-2)×(+3) = ;
(3)(+2)×(-3)= ;
(4)(-2)×(-3)= ;
(5)两个数相乘,一个数是0时,结果为0
观察上面的式子, 思考下列问题(1)正数乘以正数为 数(2)正数乘以负数为 数(3)负数乘以正数为 数(4)负数乘以负数为 数(5)0乘以一个数积为 数乘积的绝对值等于各乘数绝对值得 你有什么发现?能说出有理数乘法法则吗? 综合上面各种情况,学生讨论并归纳出有理数乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0.培养学生从特殊到一般的归纳思想,培养学生的概括能力和语言表达能力。使学生明确有理数中包括正数,负数,0,培养完整的分类思想。例如: ……同号两数相乘=+( )……得正………并把绝对值相乘因此 ………同号两数相乘( )………得负………并把绝对值相乘所以 解: 倾听,思考,讨论并归纳有理数乘法运算的步骤让学生进一步理解法则,用概括出的规律指导学生正确地进行计算并由此归纳出有理数乘法运算的步骤:一是确定积的符号二是确定积的绝对值。
三、巩固练习
1、直接说出下列两数相乘所得积的符号
1)5×(—3)
2)(—4)×6 3)(—7)×(—9) 4)×8 独立思考,回答对于有理数的乘法,关键是确定积的符号,及时的应用,让学生初步体验成功的喜悦。例1 计算:(1)(-3)×(-9); (2)(- )× (3)1×(-3)(4)(-1)×(-3)(5)1×a (6)(-1)×a(7) (8) 独立完成,由几位同学进行板演,并自主评价。由练习通过小组讨论,找出规律。巩固有理数乘法法则,并通过练习让学生归纳出一个数同1相乘得它本身,(5)、(6)练习让学生初步体验用字母来表示数的方法,由(8)引入倒数的概念,通过讨论让学生理解有理数倒数的定义与小学里是一样的,并明确0没有倒数。例2 用正负数表示气温的变化量,上升为正,下降为负。登山队攀登一座山峰,每登高1千米气温的变化量为-6摄氏度,攀登3千米后,气温有什么变化?解:(—6)×3=—18答:气温下降18摄氏度。思考,解答让学生体会数学来源于实践,又服务于实践的思想。练习:1.(课本33页)计算(1) (2) (3) (4) (5) (6) 快速计算,回答巩固有理数乘法法则2.商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?思考,并解答让学生体验数学来源于实践,又服务于实践的思想。3.写出下列各数的倒数1 —1 5 —5 思考,求解巩固有理数倒数的定义及如何求一个数的倒数 四、小结:这节学到了什么?(1)有理数的乘法法则(2)如何进行两个有理数的运算,有几个步骤 ①确定积的符号 ②确定积的绝对值(3)倒数的定义和如何求一个数的倒数小组讨论,归纳后发言回顾一节所学内容,使学生加深印象,知识点系统化,同时让学生学会自我反思这节课我学会了什么?了解自己的学习情况,能更准确的做好复习五、作业1.计算:(1)(-16)×15(2)(-9)×(-14); (3)(-36)×(-1);(4)100×(-);(5)-×(-); (6) 2.填空(用“>”或“<”号连接):(1)如果 a<0,b<0,那么 ab ________0;(2)如果 a<0,b<0,那么ab _______0;(3)如果a>0时,那么a ____________2a;(4)如果a<0时,那么a __________2a.完成巩固知识,反馈学生学习信息。评价分析:本节课在教学设计上,依教材、《课标》及学生实际情况,力求调动一切积极因素,激发学生的学习兴趣,在教师的启发诱导下,最大限度的挖掘与学生潜能,体现学生的主体性,由课堂教学反馈信息综合分析,达到如下教学效果。1、“生活情景”激发学生兴趣,从而引入课题。2、探究新知环节,培养学生动手操作、观察、概括及表达能力。3、例题讲解和练习巩固环节,使学生掌握理解有理数减法法则,从而巩固新知。4、关注学生个体差异,使不同的个体均获得不同的效果。
有理数的乘法教案【第四篇】
教学目标
1、知识与技能
①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力。
②会进行有理数的乘法运算。
2、过程与方法
通过对问题的变式探索,培养观察、分析、抽象的能力。
3、情感、态度与价值观
通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性。
教学重点难点
重点:能按有理数乘法法则进行有理数乘法运算。
难点:含有负因数的乘法。
教与学互动设计
(一)创设情境,导入新课
做一做 出示一组算式,请同学们用计算器计算并找出它们的规律。
例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________
(3)(-5)(+3)=________;(4)(-5)(-3)=________
例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________
(3)(-6)(+4)=________;(4)(-6)(-4)=________
(二)合作交流,解读探究
想一想 你们发现积的符号与因数的符号之间的关系如何?
学生活动:计算、讨论
总结 一正一负的两个数的乘积为负;两正或两负的`乘积是正数。
两数相乘,同号得正,异号得负。
想一想 两数相乘,积的绝对值是怎么得到的呢?
学生:是两因数的绝对值的积。