首页 > 学习资料 > 教案大全 >

有理数的乘法教案精彩5篇

网友发表时间 2807164

【阅读指引】阿拉题库网友为您分享整理的“有理数的乘法教案精彩5篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

有理数的乘法数学教案【第一篇】

教材分析

“数的运算”是“数与代数”学习领域的重要内容。有理数的乘法运算是加法运算的另一种运算形式,它也是今后学习有理数的除法、乘方及混合运算的基础。因此本节内容具有承前启后的重要作用。

学情分析

1、让学生亲身经历将实际问题抽象成数学问题的过程,增加他们对问题的感性认识。

2、通过观察、归纳,提高学生的理性认识。

3、培养学生学会表达、学会倾听的良好品质。

教学目标

1、知识技能:

(1)经历探索有理数乘法运算的过程,归纳有理数乘法运算法则。

(2)掌握有理数乘法法则,能解决简单的的实际问题。

2、数学思考:

通过自主合作探究经历探索有理数运算的过程,发展学生观察、归纳、猜想等能力。

3、问题解决:

通过自主探索和合作交流,发展学生逆向思维及化归思想。

4、情感态度价值观:

通过经历探索有理数乘法运算的过程感受数学与生活的紧密联系,提高学生对知识的应用能力以及勇于探索、敢于发言的个性品质。

教学重点和难点

教学重点是:有理数的乘法法则的理解和运用.

教学难点是:使学生体会有理数乘法法则规定的合理性;探究出确定两个负数相乘和多个有理数相乘的符号符号规律。

有理数的减法教案【第二篇】

教学目标

1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数。

2、能力目标:能应用正负数表示生活中具有相反意义的量。

3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系。教学重难点

重点:理解有理数的意义。

难点:能用正负数表示生活中具有相反意义的量。

教学过程

一、创设情境、提出问题

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分。两个队答题情况见书上第23页。

二、分析探索、问题解决

分组讨论扣的分怎样表示?

用前面学的数能表示吗?

数怎么不够用了?

引出课题。

讲授正数、负数、有理数的定义。

用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数。启发学生再从生活中例举出用负数表示具有相反意义的数。

三、巩固练习

1、用正数或负数表示下列各题中的数量:

(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;

(2)球赛时,如果胜2局记作+2,那么-2表示______;

(3)若-4万表示亏损4万元,那么盈余3万元记作______;

(4)+150米表示高出海平面150米,低于海平面200米应记作______.

分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.

2、下面说法中正确的是()。

a.“向东5米”与“向西10米”不是相反意义的量;

b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;

d.若将高1米设为标准0,高米记作+米,那么-米所表示的高是米.

三、小结回顾、纳入体系

学生交流回顾、讨论总结,教师补充如下:

概念:正数、负数、有理数。

分类:有理数的分类:两种分法。

应用:有理数可以用来表示具有相反意义的量。

七年级数学有理数的乘法教案及教学设计【第三篇】

学习目标:

1、要熟记有理数除法的法则,会进行有理数除法的运算。

2、掌握求有理数倒数的方法,并能熟练地求出一个给定的有理数的倒数。

3、能熟练地进行简单的有理数的加减乘除混合运算。

4、体会比较、转化、分类的思想方法,在探索有理数除法法则时的应有

学习重点

有理数除法的法则及应用;求一个有理数的倒数。

学习难点:

在进行有理数除法运算时,能根据题目特点,恰当地选择有理数的除法法则。

学习过程:

一 前置复习 :

1、有理数的乘法法则是:

举例说明。

2、多个有理数乘法:

(1)几个不等于0的有理数相乘,积的符号由 决定,当 时积为正;当 时积为负。

(2)几个有理数相乘,积就为零。

二 探究新知:

(教师寄语: 现实世界中的事物都是既相互联系又可以相互转化的,在数学上加与减,乘与除也是可以相互转化的)

自学课本58页至59页例4之前的内容,并且认真体会在探索除法与乘法的关系时,用到的比较、转化、分类的思想方法。一定要熟记:

(1) 有理数除法运算转化为乘法运算的法则:除以一个数,________________________。

____________________。

(2) 有理数的除法法则:两数相除,_____________,_____________,_____________。

0除以任何_______________________________。

(3) 与以前学过的倒数的概念一样,___________两个有理数互为倒数。

如,3与____互为倒数,-6与_____互为倒数,是____的倒数,___是 的倒数。

三 新知应用:

例1、独立完成课本58页例4,然后对比课本上的解答,思考交流:在两个________数相除时,可选择法则(1),在两个_______数相除时,可选择法则(2)

学以致用 计算:

(1) (42)7 (2) ( )( )

例2、计算(1) ( )( )( ) (2) ( )( )

(温馨提示:1、 有理数的乘除混合运算,应把除以一个数转化成乘这个数的倒数,然后统一成乘法来进行计算。2、 加减乘除混合运算的运算顺序和小学一样。)

四 课堂练习:

独立完成课本P59练习2,3题。(将完整的计算过程写在下面空白处)

五 达标测试

(独立完成)

1 填空:(1)2 的倒数与 的相反数的积是_______。

(2)(1)(3)( )=______。

(3)两个数的商为正数,那么这两个数一定是_________。

(4)一个数的倒数是它本身,则这个数是____________。

2、计算:(1) (2)

(3)、 (4) ( + )

六 总结反思:

1、说一说:

本节课我学会了 ;

使我感触最深的是 ;

我感到最困难的是 ;

我想进一步探究的问题是 。

2、:评一评

自我评价 小组评价 教师评价

七 布置作业

1(必做题) 课本60页习题A组3,4题。(要求:做在作业本上)

2(选做题) 课本60页习题B组1,2题。(要求:将答案直接写在课本上,明天课堂上用5分钟时间讨论交流)

有理数的乘法数学教案【第四篇】

一、知识与技能

经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。

二、过程与方法

经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。

三、情感态度与价值观

培养学生积极探索精神,感受数学与实际生活的联系。

教学重、难点与关键

1.重点:应用法则正确地进行有理数乘法运算。

2.难点:两负数相乘,积的符号为正与两负数相加和的符号为负号容易混淆。

3.关键:积的符号的确定。

教具准备

投影仪。

四、教学过程

一、引入新课

在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?

五、新授

课本第28页图,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O。

(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。

初中数学《有理数的乘法》教学设计【第五篇】

教学目的:

1、要求学生会进行有理数的加法运算;

2、使学生更多经历有关知识发生、规律发现过程。

教学分析:

重点:对乘法运算法则的运用,对积的确定。

难点:如何在该知识中注重知识体系的延续。

教学过程:

一、知识导向:

有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。

二、新课:

1、知识基础:

其一:小学所学过的乘法运算方法;

其二:有关在加法运算中结果的确定方法与步骤。

2、知识形成:

(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。

情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

列式:

即:小虫位于原来出发位置的东方6米处

拓展:如果规定向东为正,向西为负

情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

列式:

即:小虫位于原来出发位置的西方6米处

发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6

同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6

概括:把一个因数换成它的相反数,所得的积是原来的积的相反数

3、设疑:

如果我们把中的一个因数2换成它的相

反数-2时,所得的积又会有什么变化?

当然,当其中的一个因数为0时,所得的积还是等于0。

综合:有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数与零相乘,都得零。

例:计算:

(1)(2)

三、巩固训练:

、2、3

四、知识小结:

本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。

五、家庭作业:

、2、3

六、每日预题:

1、小学多学过哪些乘法的运算律?

2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?

相关推荐

热门文档

20 2807164