首页 > 学习资料 > 教案大全 >

有理数的乘方教案(优推5篇)

网友发表时间 159436

【序言】由阿拉题库最美丽的网友为您整理分享的“有理数的乘方教案(优推5篇)”教案资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

《有理数的乘方》优秀教案【第一篇】

教学目标

1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;

2、知道底数、指数和幂的概念,会求有理数的正整数指数幂;

3、会用科学记数法表示较大的数。

教学重点

1、有理数乘方的意义,求有理数的正整数指数幂;

2、用科学记数法表示较大的数。

教学难点

有理数乘方结果(幂)的符号的确定。

教学过程(教师)

问题引入

手工拉面是我国的传统面食。制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条。你能算出拉扣6次后共有多少根面条吗?

乘方的有关概念

试一试:

将一张报纸对折再对折……直到无法对折为止。你对折了多少次?请用算式表示你对折出来的报纸的层数。

你还能举出类似的实例吗?

有理数的乘方:同步练习

1、对于式子(-3)6与-36,下列说法中,正确的是()

A.它们的意义相同

B.它们的结果相同

C.它们的意义不同,结果相等

D.它们的意义不同,结果也不相等

2、下列叙述中:

①正数与它的绝对值互为相反数;

②非负数与它的绝对值的差为0;

③-1的立方与它的平方互为相反数;

④±1的倒数与它的平方相等。其中正确的个数有()

有理数的乘方教案【第二篇】

一、 学什么

1、 知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。

2、 知道底数、指数和幂的概念,会求有理数的正整数指数幂。

二、 怎样学

归纳概念

n个a相乘aaa= ,读作: 。 其中n表示因数的个数。

求 相同因数的积的运算叫作乘方。乘方运算的结果叫幂。

例1:计算

(1)26 (2)73 (3)(3)4 (4)(4)3

例2:(1) ( )5 (2)( )3 (3)( )4

想一想1.(1)10,(1)7,( )4,( )5是正数还是负数?

2.负数的幂的符号如何确定?

思考题:1、(a2)2+(b+3)2=0,求a和b的值。

2、计算 ( 2)20 09 +(2)20xx

3、在右 边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三 学怎样

1.某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这 种细菌由1个可分裂成( )

A 8个 B 16个 C 4个 D 32个

2.一根长1cm的绳子,第一次剪去一半。第 二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( )

A ( )3m B ( )5m C( )6m D( )12 m

3.()3,()4,()5的从小到大的顺序是 。

4.计 算

(1)(3)3 (2)()2 (3)02004 (4 )12004

(5)104 (6)( )5 (7)-( )3 (8) 43

(9)32(3)3+(2)223 (10)-18(3)2

5.已知(a2)2+|b5|=0,求(a)3( b)2.

有理数的乘方(第2课时)

一、学什么

会用科学计数法表示绝对值较大的数。

二、怎样学

定义:一般地,一个大于10的数可以写成 的形式,其中 ,n是正整数,这种记数法称为科学记数法。

例题教学

例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至20xx年12月人们最后一次收到它发回的信号时,它已飞离地球1220000000 0km。用科学记数法表示这个距离。

例2:用科学记数法表示下列各数。

(1)10000000 (2) 57000000 (3) 123000 0000 00

例3.写出下列用科学记数法表示的数的原数。

思考:比较大小

(1) 与

(2)与 0

学怎 样

1.用科学记数法表示314160000得 ( )

B. C. 0 D.

2.稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为( )

吨 B. 吨 08吨 D. 0吨

3.人类的遗传物质是DNA,DNA是很 大的链,最短的22号染色体也长达30000000个核苷酸,3000000 0用科学记数法表示为 ( )

B. 3107 D.

4.第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为 。

5 .比较大小:

108 ; .

6.用科学记数法表示下列各数。

(1)32000 (2) -80000000 000 (3) (4)- 389999900000000

有理数的乘方教学反思【第三篇】

1.情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对乘方的理解,更感受到学习乘方概念的必要性和激发学习的兴趣.②教材中数的乘方概念是根据几何意义来定义的。(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的乘方的规律,如果直接给出乘方的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

2.教学开放式的问题人手,培养学生的分类和发散思维的能力;把乘方分类表示出来并观察它们的特征,在复习乘方知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握乘方的概念。

3.本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。

有理数的乘方教学反思【第四篇】

有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以我们在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则的分类讨论,有理数乘方的易混淆点三个方面来教学。

一、要求学生深刻理解有理数乘方的意义。

即一般地n个相同的因数相乘。在教学中,这一部分主要采用学生自学的方式,我通过学案后的相关问题检测学习的效果。利用学案让学生能自己学会乘方各部分的名称、意义,把学生放在学习的主体地位。我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学。始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上。例如,通过实际计算,让学生自己体会到负数的乘方不全是负数,而需要分不同的情况来讨论。

二、特别注意有理数乘方的符号法则的分类讨论。

有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例题中,设计了两组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想。符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显。

三、讲清有理数乘方中的常见易混淆点。

如 与-2 ; 与- 在意义、读法、结果上的区别。最主要的是弄清底数的不同。同时会把他们转换乘法,观察各自的特点,与其他几个的区别。要学生明确写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来学乘方。

初一数学《有理数的乘方》教案【第五篇】

学生起点分析

学生的知识技能基础:学生在小学已经学习过非负有理数的乘方运算,并且知道a×a记作 a2,读作a的平方或a的二次方,前几节课,学生已掌握了有理数的乘法法则,具备了进一步学习有理数的乘法运算的知识技能基础。

学生的活动经验基础:在以往的学习过程中,学生经历了不同类型的数学活动,积累了较为丰富的经验,合作学习的能力和探究学习的意识都有明显的进步,尤其是语言表达能力的提高,为本节课的学习奠定了重要的基础。

学习任务分析

新版教科书在学生熟练掌握了有理数的乘法运算的基础上,尤其是在学生具备了一定的学习能力和探究方法的基础上,提出了本节课的具体学习任务,理解有理数乘方的意义,掌握有理数乘方的概念,学会有理数乘方的运算,本节课的教学目标是:

在现实背景中,感受有理数乘方的必要性,理解有理数乘方的意义;

掌握有理数乘方的概念,能进行有理数的乘方运算;

3、经历有理数乘方的符号法则的探究过程,领悟乘方运算符号的确定法则。

教学过程设计

本节课设计了六个环节:第一环节:引入情境,导入新课;第二环节:定义乘方,熟悉

概念;第三环节:例题练习,乘方运算;第四环节:随堂演练,符号法则;第五环节:联系拓广,发散思维;第六环节:课堂小结;第七环节:布置作业。

第一环节:引入情境,导入新课

活动内容:观察教科书给出的图片,阅读理解教科书提出的问题,弄清题意,计算每一次分裂后细胞的个数,五小时经过十次分裂后细胞的个数。

活动目的:感受现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用,面对实际问题,主动尝试从数学的角度运用所学知识解决实际问题,并在解决问题的过程中体验到乘法运算的必要性和优越性,同时体会细胞分裂的述度非常快,从而引出本节课的学习课题:有理数的乘方。

活动的注意事项:在活动中需要运用乘法运算计算五小时一个细胞能分裂成多少个细胞,这个过程不要一次完成,而应让学生仔细分析,逐步完成,并依次类推,如果一次分裂成2个,第2次分裂成2×2个,第三次分裂成2×2×2个。因为五小时要分裂10次,所以第十次分裂成2×2×2………×2×2个。得到这个结果时要指出两点:一是让学生感受细胞分裂的速度非常快的事实。二是要指出这种表示方法很复杂,为了简便,可将它写成210,表示10个2相乘,培养学生的符号感,同时指出这就是乘法运算,从而引出本节课的学习内容:有理数的乘方。

第二环节:定义乘方,熟悉概念

活动内容:1.归纳多个相同因数相乘的符号表示法,定义乘方运算的概念。

2.通过练习熟悉乘方运算的有关概念。

填空:

(1)(-2)10的底数是_______,指数是________,读作_________

(2)(-3)12表示______个_______相乘,读作_________,

(3)( 1/3)8的指数是________,底数是________读作_______,

(4)的指数是_________,底数是________,读作_______,xm 表示____个_____相乘,指数是______,底数是_______,读作_________.

把下列各式写成乘方的形式:

(1)6×6×6; (2)×;

(3)(-3)(-3)(-3)(-3);

(4) .

活动目的: 培养学生的归纳抽象能力,建立符号感,理解符号所表示的数量关系和变化规律,学习新知识,认识乘方是一种运算,幂是乘方运算的结果。还要让学生明白:一个数可以看作这个数本身的一次方,例如8就是 ,通常指数为1时省略不写。

活动的注意事项: 教科书在给出乘方运算的 概念后,有关练习放在随堂练习的第一题中。为了及时消化新知识,要完成活动中的填空练习及乘方与乘法的相互转换,真正弄清楚幂的读法和写法,区分幂的指数和底数。

第三环节:例题练习,乘方运算

活动内容:教科书例1,例2分别计算:

例1:① 53 ;② (-3)4;③ (-1/2)3.

相关推荐

热门文档

20 159436