首页 > 工作范文 > 总结报告 >

初中抛物线知识点总结(精编5篇)

网友发表时间 464159

【导言】此例“初中抛物线知识点总结(精编5篇)”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

抛物线中定点问题的解决方法1

在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的'方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。

利用焦点弦求值:

利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。

抛物线中的几何证明方法:

利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。

聪明在于勤奋,天才在于积累。山草香为大家整理的5篇初中抛物线知识点总结到这里就结束了,希望可以帮助您更好的写作抛物线。

抛物线的几何性质2

以标准方程y2=2px为例

(1)范围:x

(2)对称轴:对称轴为y=0,由方程和图像均可以看出;

(3)顶点:O(0,0),注:抛物线亦叫无心圆锥曲线(因为无中心);

(4)离心率:e=1,由于e是常数,所以抛物线的形状变化是由方程中的p决定的;

(6)焦半径公式:

抛物线上一点P(x1,y1),F为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p0):

(7)焦点弦长公式:

对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。设过抛物线y2=2px(pO)的焦点F的弦为AB,A(x1,y1),B(x2,y2),AB的倾斜角为,则有

①|AB|=x1+x2+p

以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用弦长公式来求。

(8)直线与抛物线的关系:

直线与抛物线方程联立之后得到一元二次方程:ax2+bx+c=0,当a0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则直线是抛物线的对称轴或是和对称轴平行的直线,此时,直线和抛物线相交,但只有一个公共点。

(9)抛物线y2=2px的切线:

①如果点P(x0,y0)在抛物线上,则y0y=p(x+x0);

(10)参数方程

抛物线3

y = ax^2 + bx + c (a≠0)

就是y等于a乘以x 的平方加上 b乘以x再加上 c

置于平面直角坐标系中

a > 0时开口向上

a < 0时开口向下

(a=0时为一元一次函数)

c>0时函数图像与y轴正方向相交

c< 0时函数图像与y轴负方向相交

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

(当然a=0且b≠0时该函数为一次函数)

还有顶点公式y = a(x+h)_2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))

就是y等于a乘以(x+h)的平方+k

-h是顶点坐标的x

k是顶点坐标的y

一般用于求最大值与最小值和对称轴

抛物线标准方程:y^2=2px (p>0)

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

初中抛物线知识点总结4

发展历程

Apollonius所著的八册《圆锥曲线》(Conics)集其大成抛物线问题,可以说是古希腊解析几何学一个登峰造极的精擘之作。今日大家熟知的ellipse(椭圆)、parabola(抛物线)、hyperbola(双曲线)这些名词,都是Apollonius所发明的。当时对于这种既简朴又完美的曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的`在大自然的基本结构中扮演着重要的角色。

标准方程

右开口抛物线:y2=2px

左开口抛物线:y2=-2px

上开口抛物线:x2=2py

下开口抛物线:x2=-2py

[p为焦准距(p>0)]

共同点:

①原点在抛物线上,离心率e均为1;

②对称轴为坐标轴;

③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4

不同点:

①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;

②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。

切线方程

抛物线y2=2px上一点(x0,y0)处的切线方程为:yoy=p(x+x0)

抛物线y2=2px上过焦点斜率为k的方程为:y=k(x-p/2)

抛物线的焦点弦的性质:5

关于抛物线的几个重要结论:

(1)弦长公式同椭圆。

(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部

(3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p>,高二;0)的斜率为k的切线方程是y=kx+

(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是

(5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0),则

(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F.

利用抛物线的几何性质解题的方法:

根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离。利用抛物线的几何性质,可以进行求值、图形的判断及有关证明。

相关推荐

热门文档

35 464159