抛物线的知识点总结实用4篇
【序言】由阿拉题库网友为您整理分享的“抛物线的知识点总结实用4篇”办公资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
抛物线中定点问题的解决方法1
在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的'方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。
利用焦点弦求值:
利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。
抛物线中的几何证明方法:
利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是☆☆抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。
它山之石可以攻玉,以上就是一米范文范文为大家带来的4篇《抛物线的知识点总结》,能够帮助到您,是一米范文范文最开心的事情。
抛物线2
y = ax^2 + bx + c (a≠0)
就是y等于a乘以x 的`平方加上 b乘以x再加上 c
置于平面直角坐标系中
a > 0时开口向上
a < 0时开口向下
(a=0时为一元一次函数)
c>0时函数图像与y轴正方向相交
c< 0时函数图像与y轴负方向相交
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
(当然a=0且b≠0时该函数为一次函数)
还有顶点公式y = a(x+h)* 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值和对称轴
抛物线标准方程:y^2=2px (p>0)
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
抛物线3
y = ax^2 + bx + c (a≠0)
就是y等于a乘以x 的平方加上 b乘以x再加上 c
置于平面直角坐标系中
a > 0时开口向上
a < 0时开口向下
(a=0时为一元一次函数)
c>0时函数图像与y轴正方向相交
c< 0时函数图像与y轴负方向相交
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
(当然a=0且b≠0时该函数为一次函数)
还有顶点公式y = a(x+h)_2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值和对称轴
抛物线标准方程:y^2=2px (p>0)
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
抛物线的几何性质4
以标准方程y2=2px为例
(1)范围:x
(2)对称轴:对称轴为y=0,由方程和图像均可以看出;
(3)顶点:O(0,0),注:抛物线亦叫无心圆锥曲线(因为无中心);
(4)离心率:e=1,由于e是常数,所以抛物线的形状变化是由方程中的p决定的;
(6)焦半径公式:
抛物线上一点P(x1,y1),F为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p0):
(7)焦点弦长公式:
对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。设过抛物线y2=2px(pO)的焦点F的弦为AB,A(x1,y1),B(x2,y2),AB的倾斜角为,则有
①|AB|=x1+x2+p
以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用弦长公式来求。
(8)直线与抛物线的关系:
直线与抛物线方程联立之后得到一元二次方程:ax2+bx+c=0,当a0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则直线是抛物线的对称轴或是和对称轴平行的直线,此时,直线和抛物线相交,但只有一个公共点。
(9)抛物线y2=2px的切线:
①如果点P(x0,y0)在抛物线上,则y0y=p(x+x0);
(10)参数方程