首页 > 工作范文 > 总结报告 >

抛物线的知识点总结(实用4篇)

网友发表时间 295451

【导言】此例“抛物线的知识点总结(实用4篇)”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

抛物线1

y = ax^2 + bx + c (a≠0)

就是y等于a乘以x 的平方加上 b乘以x再加上 c

置于平面直角坐标系中

a > 0时开口向上

a < 0时开口向下

(a=0时为一元一次函数)

c>0时函数图像与y轴正方向相交

c< 0时函数图像与y轴负方向相交

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

(当然a=0且b≠0时该函数为一次函数)

还有顶点公式y = a(x+h)_2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))

就是y等于a乘以(x+h)的平方+k

-h是顶点坐标的x

k是顶点坐标的y

一般用于求最大值与最小值和对称轴

抛物线标准方程:y^2=2px (p>0)

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

读书破万卷,下笔如有神。以上4篇抛物线的知识点总结就是山草香小编为您分享的抛物线的范文模板,感谢您的查阅。

抛★★物线的焦点弦的性质:2

关于抛物线的几个重要结论:

(1)弦长公式同椭圆。

(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部

(3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p>,高二;0)的斜率为k的切线方程是y=kx+

(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是

(5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0),则

(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F.

利用抛物线的几何性质解题的方法:

根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离。利用抛物线的几何性质,可以进行求值、图形的判断及有关证明。

抛物线中定点问题的解决方法3

在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的'方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。

利用焦点弦求值:

利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。

抛物线中的几何证明方法:

利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。

抛物线的几何性质4

以标准方程y2=2px为例

(1)范围:x

(2)对称轴:对称轴为y=0,由方程和图像均可以看出;

(3)顶点:O(0,0),注:抛物线亦叫无心圆锥曲线(因为无中心);

(4)离心率:e=1,由于e是常数,所以抛物线的形状变化是由方程中的p决定的;

(6)焦半径公式:

抛物线上一点P(x1,y1),F为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p0):

(7)焦点弦长公式:

对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。设过抛物线y2=2px(pO)的焦点F的弦为AB,A(x1,y1),B(x2,y2),AB的倾斜角为,则有

①|AB|=x1+x2+p

以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用弦长公式来求。

(8)直线与抛物线的关系:

直线与抛物线方程联立之后得到一元二次方程:ax2+bx+c=0,当a0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则直线是抛物线的对称轴或是和对称轴平行的直线,此时,直线和抛物线相交,但只有一个公共点。

(9)抛物线y2=2px的切线:

①如果点P(x0,y0)在抛物线上,则y0y=p(x+x0);

(10)参数方程

相关推荐

热门文档

35 295451