首页 > 学习资料 > 小学教案 >

简易方程(精选4篇)

网友发表时间 1283727

【前言导读】此篇优秀教案“简易方程(精选4篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

简易方程【第一篇】

人教版五年级上册《解简易方程》这个单元中,教材是通过等式的基本性质来解方程,这个方法虽然说使得小学的知识与初中的知识更加的接轨,让方程的解法更加的简单。从教材的编排上,整体难度下降,对学生以后的发展是有利的。但是教材中故意避开了减数和除数为未知数的方程,如:a-x=b或a÷x=b,要求学生根据实际问题的数量关系,列成如x+b=a或bx=a的方程。这样的处理方法,有时也会无法避免地直接和方程思想发生矛盾。例如“爸爸比小明大28岁,小明Х岁,爸爸40岁。”很多学生列出了这样的方程:40-Х=28,方程列的是没有任何问题的,但是应该怎么解呢?允不允许学生用四则运算各部分的关系来解方程?是否该向学生讲解方法?还是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的思想:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维不就又和现在冲突了吗?现在学习的节方程中,学生很容易看见加法就减,看见减法就加,看见乘法就除,看见除法就乘,如把30÷Ⅹ=15的解法教给学生,能熟练掌握并运用的学生很少,对大部分学生来说越教越是糊涂,把本来刚建构的解方程方法打破了。如果不安排,那么每次在出现的时故意回避吗?

在教学列方程解加减乘除解决问题第一课时,我是这样处理的。先出示做一做的题目,这题更接近学生的实际,学生也能更好理解数量关系。小明今年身高152厘米,比去年长高了8厘米。小明去年身高多少?先让学生读题理解题目中有哪几个量?引导学生进行概括,去年的身高、今年的身高、相差数。追问:这三个量之间有怎样的相等关系呢?

去年的身高+长高的8cm=今年的身高

今年的身高-去年的身高=长高的8cm

今年的身高-长高的8cm=去年的身高

你能根据这三个数量关系列出方程吗?学生尝试列方程。几乎全班学生都是正确的。

X+8=152 152-x=8 152-8=x

追问学生你对哪个方程有想法?学生一致认为对第三个方程有想法?生1:这个根本没有必要写x,因为直接可以计算了。生2:x不写,就是一个算式,直接可以算了。我肯定到:列算式解决实际问题时,未知数始终作为一个“解决的目标”不参加列式运算,只能用已知数和运算符号组成算式,所以这样的x就没有必要。接着让学生解这两个方程X+8=152 、152-x=8方程 。学生发现152-x=8解出来的解是不正确的。告诉学生减数为未知数的方程我们小学阶段不作要求,所以你们就无法解答了。接着,我再引导学生观察这三个数量关系,他们之间有联系吗?其实减法是加法的逆运算,是有加法转变过来。因此,我们在思考数量关系时,只要思考加法的数量关系,这是顺向思维,解题思路更加直截了当,降低了思考的难度。接着只要把未知数以一个字母(如x)为代表和已知数一起参加列式运算x+b=a,体会列方程解决问题的优越性。这就是我们今天学习的一种新的解决问题的方法——列方程解决问题。

接着用同样的教学方法探究 bx=a的解决问题。

我这样的教学不知道是否合理?其实小学生在学习加减法、乘除法时,早就对四则运算之间的关系有所感知,并积累了比较丰富的感性经验。要不要运用等式的性质对学生再加以概括呢?

简易方程【第二篇】

第三课时

教学内容:数学书p57、58页例1及“做一做”中相关部分练习,练习十一第4题、第5题(前两排)、第6题(第一排)、第7题(第一排)。

教学目标:

1、结合具体图例能根据题目找到等量关系列出方程。

2、会根据等式不变的规律解形如x±a=b的方程,掌握解方程的格式和写法。

3、会检验一个具体的值是不是方程的解,掌握检验的格式。

4、结合具体题目,让学生初步理解方程的解与解方程的含义。

5、进一步提高学生比较、分析的能力。

教学重点:会解形如x±a=b的方程,并检验。

教学难点:理解形如x±a=b的方程原理,掌握正确的解方程格式及检验方法。

教学过程:

一、导入新课

上一节课,我们学习了什么?

等式在哪些情况下变换仍然保持不变呢?

学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。

二、新知学习

1、教学例1

出示例1,从图中可以获取哪些数学信息?图中表示了什么样的等量关系?能用一个方程来表示这一等量关系吗?得到x+3=9

x是多少方程的左右两边才相等呢?也就是求盒子中一共有多少个皮球。学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。可能有以下四种思路:

(1)利用加减法的关系:9-3=6。

(2)想6+3=9,所以x=6。

(3)把9分成6+3,想x+3=6+3,所以x=6。

(4)利用等式的基本性质,从方程两边同时减去一个3,左右两边仍然相等。就能得出x=6。

对于这些不同的方法,分别予以肯定。说明第(4)种用到了等式的性质,是解方程的方法之一,所以要重点掌握。

谁再来回顾一下我们是怎样解方程的?

师板书:x+3-3=9-3

化简,即得:x=6

问:左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

2、认识、区别方程的解和解方程。

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=6就是方程x+3=9的解。

而求方程的解的过程叫做解方程。刚才,我们板书的过程就是求方程解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?(方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。)

3、检验的方法及格式。

怎么判断x=3是不是方程的解呢,还需要验算。怎样验算呢?(将x=3代入方程之中看左右两边是否相等)

师示范书写格式:方程左边=x+6

=3+6

=9

=方程右边

所以,x=3是方程的解。

用同样的方法检验x=2是不是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

三、巩固练习:

独立完成p59页做一做第1题第一幅图。第2题第1排。

四、小结:通过这节课学到了什么?还有什么问题?

教学小记:

今天我对课时安排及教学设计均做了较大调整。原订计划是第三课时完成“方程的解”及“解方程”概念教学,要求学生掌握方程检验的书写格式,第四课时完成加、减、乘、除各类型方程解法的教学。调整后的教案改为第三课时完成“方程的解”及“解方程”概念教学、会解形如x±a=b的方程,掌握检验的格式;第四课时只完成乘除法方程的解法。其次对于教学设计也做了相应处理,将57页的内容适时穿插到了例1的学习过程之中。

为什么我会做如此改动呢?主要基于以下三点原因:1、考虑到学生一节课内如要掌握加减乘除各种类型方程的解法、理解解方程的原理,规范书写格式,内容太多,怕影响教学效果。2、教材57页做一做中要求学生检验方程的解是否正确,但规范的检验格式却不在本页,而在58页。3、如果能将“解方程”与“方程的解”这两个概念结合规范的解方程书写过程和结果来向学生解释,更利于学生理解掌握。

根据以往教学经验,知道解方程的书写格式是一大难点,所以在前天晚上就在脑子中开始酝酿如何用儿歌帮助学生突破难点。今天上课一试,效果确实不同凡响。儿歌如下:

解方程首先要写“解”,

x每步都不能离,

所有的等号要对齐,

检验的习惯要牢记。

按调整后的教案实施教学,效果比较理想。不仅一节课内完成了预订的教学任务,而且学生作业质量较高,仅一人书写格式有误,一人方法掌握不牢。

简易方程【第三篇】

教学内容:教材第73—74页用字母表示数、和“练一练”,练习十四第1—5题。

教学要求:

1、使学生进一步认识用字母表示数及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式,培养学生抽象,概括的能力。

2、使学生加深对方程及相关概念的认识,掌握的步骤和方法,能正确地。

教学过程 :

一、揭示课题

我们在复习了整数、小数的概念,计算和应用题的基础上,今天要复习,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,加深理解方程的概念,掌握的步骤、方法,能正确地。

二、复习用字母表示数

1、用含有字母的式子表示:

(1) 求路程的数量关系。

(2) 乘法交换律。

(3) 长方形的面积计算公式。

让学生写出字母式子,同时指名一人板演。指名学生说说每个式子表示的意思。提问:用字母表示数有什么作用?用字母表示乘法式子时要怎样写?

2、做“练一练”第1题。

让学生做在课本上。指名口答结果,老师板书,结合提问怎样求式子的值的。

3、做练习十四第1题。

指名学生口答。选择两道说说是怎样想的。

三、复习

1、复习方程概念。

提问:什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)

2、做“练一练”第2题。

小黑板出示,学生判断并说明理由。提问:5x-4x=2里未知数x等于几,x=2是这个方程的什么?7×+x=里未知数x等于几?x=是这个方程的什么?那么,什么叫做“方程的解”?(板书定义)它与“解方程”有什么不同?(强调解方程是一步一步完成的过程)你会解方程求出方程的解吗?根据什么解方程?

3、。

(1) 做“练一练”第3题第一组题。

指名两人板演,其余学生做在练习本上。集体订正:解第一个方程是怎样想的,检查解方程时每一步依据什么做的。第二个方程与第一个有什么不同,解方程时有什么不同?指出:解方程时先看清题目,根据运算顺序,能先算的就先算出来。不能算的就看做一个未知数。我们现在解方程是一般根据加减法之间、乘除法之间的关系来进行的。(结合板书:解方程:能先算的要先算,再按各部分关系来解)追问:这两题可以怎样检验方程的解对不对?

(2) 做“练一练”第3题后两组题。

指名两人板演,其余学生分两组,分别做其中的一组题。集体订正,并让学生说说每组两题有什么不同,解方程的过程有什么不同。强调一定要先看清题,按运算顺序能先算的就先算出来,然后根据四则运算之间的关系求出方程的解。

(3) 做“练一练”第4题。

让学生列出方程。指名口答方程,老师板书。提问列方程的等量关系是什么。

四、课堂小结

今天复习了哪些知识?你进一步明确了什么内容?

五、布置作业

课堂作业 ;完成“练一练”第4题解方程;练习十四第2题,第3题后三题,第4题。

家庭作业 ;练习十四第3题前三题、第5题。

简易方程【第四篇】

教学内容

教科书第105~106页的例5、例6,完成“做一做”的题目和练习二十六的第1~4题。

教学目的

使学生初步学会ax±bx=c这一类简易方程的解法,培养学生分析推理能力和思维的灵活性。

教具准备

画有例5图的挂图,画有7瓶红墨水、9瓶蓝墨水的挂图,小黑板或投影片。

教学过程

一、复习

教师用小黑板或投影片出示复习题。

解下列方程。

+10=

+2×5=

-2×5=

每做完一题,指名让学生说一说解题时是怎样想的。

二、新课

1.教学例5.

教师用小黑板或投影片出示一道一般应用题:

一个工地用汽车运土,每辆车运5吨。一天上午运了4车,下午运了3车。这一天一共运土多少吨?

请一位学生读题后,教师出示画有例5图的挂图:

指名让学生说出题里的已知条件,然后让学生在练习本上独立解答。做完以后,指名让几位学生说解答方法。教师根据学生的回答板书:

解法一:5×4+5×3 解法二:5×(4+3)

教师:如果每辆车运吨该怎样解答呢?(教师将挂图上的5吨改成吨。)

根据学生的回答教师接着板书:

解法一:×4+×3 解法二:×(4+3)

教师:如果每辆车运x吨该怎样解答呢?(教师将挂图上的吨改成x吨。)

根据学生的回答教师接着板书:

解法一:x×4+x×3 解法二:(4+3)

教师:省略乘号,x×4+x×3可以写成4x+3x;(4+3)可以写成(4+3)x.

教师将板书改为:解法一:4x+3x 解法二:(4+3)x

教师:那么,4x+3x的计算结果是多少呢?我们观察一下图上的内容,结合上面的两种解法,想一想,4x表示什么?(表示4个x.)3x表示什么?(表示3个x.)4x+3x就是(4+3)个x,也就是7x.所以,4x+3x=7x.这一天一共运土7x吨。

教师:在上面的计算中,4x+3x=(4+3)x实际上应用了什么运算定律?(乘法的分配律。)

教师:想一想,如果我们把问题改成“上午比下午多运了多少吨?”该怎样列式?

指名学生列出算式:4x-3x或(4-3)x.

教师:4x-3x的计算结果是多少呢?我们再观察一下图上的内容,想一想,4个x减去3个x是多少?是不是就是(4-3)个x,也就是x.所以,4x-3x=x.这一天上午比下午多运x吨。

让学生打开书,看第105页上的例5.

2.课堂练习。

(1)做105页“做一做”的题目。先让学生想一想怎样计算,再让学生写出得数,然后,集体订正。着重讨论做7b+b和-t时应该怎样想。(如,7b+b想:7个b加1个b,等于(7+1)个b,是8个b,即8b.)

(2)做练习六的第1题。指名学生读题口答。着重讨论做b-时该怎样想。(想:1个b减个b,等于(1-)个b,是个b,即)

3.教学例6.

教师出示另一幅挂图:

让学生认真观察图上的内容,看图列方程。指名让学生说出自己列的方程,教师板书:7x+9x=80

教师:这个方程怎样解呢?自己试试看!

让学生做在练习本上,教师行间巡视,发现问题,及时纠正。学生做完以后,指名说一说解方程的过程,教师根据学生说的板书。接着,再指名学生说检验的过程,教师板书。

让学生打开书,第106页上的例6.

4.课堂练习。

做第106页“做一做”的题目。让学生独立做在练习本上,做完以后,集体订正。

5.小结。

教师:我们今天学习的解方程与以前的有什么不同?(相加或相减的两个数都含有未知数x.)解这样的方程应该怎样做呢?(运用乘法的分配律,把未知数前面的数先加、减,得出一个含有未知数的数,再求出未知数x的值。)

三、巩固练习

做练习二十六的第2题的第一栏;第3、4题。

让学生做在练习本上,教师行间巡视,发现问题,及时纠正。学生做完以后,集体订正。

四、作业

练习二十六的第2题的第二栏。

相关推荐

热门文档

16 1283727