首页 > 学习资料 > 教学设计 >

简易方程教学设计(通用4篇)

网友发表时间 1337023

【导言】此例“简易方程教学设计(通用4篇)”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

简易方程教学设计【第一篇】

知识与技能:1.使学生了解含有两个未知数的实际问题的特点,理解并掌握它的数量关系,会列方程进行解决。2.培养学生发现问题,分析问题,解决问题的能力。

过程与方法:让学生在独立思考,交流互动当中经历解决问题的过程,掌握解决问题的方法和步骤。

情感,态度与价值观:通过学习,使学生了解地球的知识,感受数学与生活的联系,激发学生的学习兴趣。

:学会解决含有两个未知数的问题。

分析数量关系。

多媒体课件。

多媒体教学。

一。准备题。

1.想一想,填一填。

(1).学校科技组有女同学人,男同学人数是女同学的3倍。

男同学有()人;

男女同学共有()人;

男同学比女同学多()人。

(2).校园里栽了棵柳树,栽的松树是柳树的倍。

松树栽了()棵;

柳树比松树少栽()棵。

2.解下面的方程。

二。引入新课。

多媒体出示图片:破坏生态环境的后果,引发学生感想。

出示植树造林图片,感受大自然的美。

三。探究新知。

1.观察主题图。

你从中知道了哪些信息?说说看。(师板书条件)

想一想:可以提出什么数学问题?(师补充板书)

2.引导学生分析问题,解决问题。

(1).学生自由读题,理解题意。

(2).引导学生画线段图,分析数量关系。

种树面积:

种草面积:共亩

提问:题中有两个未知数,怎么办?怎样设未知数?

启发学生思考,讨论,然后交流自己的方法,教师在线段图上标出亩和

亩。

教师:借助线段图,会解决这个问题吗?试试看。

(3).学生独立解决问题,完成后组织交流,汇报解法。师板书解题过程,进行检验。

3.回顾解题过程,加深对题目的进一步理解,并评价学生的做法,激发学习的积极性。

四。巩固练习。

同学们知道地球的形状吗?

1.观察地球的图片,介绍地球表面的情况,了解表面积的含义。

2.自学教材例题,在深入分析题意的基础上,让学生画出线段图,进一步理解数量关系,掌握解法。

五。深化练习。

1.将主题图中的“我家今年共种了亩的草和树”改为“我家今年种的草比树多亩”。

让学生编题,鼓励学生积极思考,分析数量关系。同伴之间进行讨论和交流,画出线段图进行解决,然后组织全班交流,学习解题方法和步骤。

2.比较两题的异同,引导学生在理解的基础上掌握“和倍”、“差倍”问题的一般解法。

2.数学小博士。

一个长方形的长是宽的倍,它的周长是56厘米。这个长方形的面积是多少平方厘米?

六。全课总结。

引导学生回顾全课,总结本节课解决问题的特点,解决问题的方法和步骤,强调怎样设未知数,要求先分析数量关系再进行解答。

七。布置作业。

一、教材的处理

数学来源于生活,生活中处处有数学。课前设计中,我紧密联系学生的生活实际,创设了“种草种树”的教学情境,让学生在这一情境中不但学习了新知,而且开阔了眼界,丰富了教学内容。紧接着,通过对教材例题的自学和练习,进一步巩固上面学到的方法。然后,改变情境图中的一个条件,启发学生继续学习,学生在前面学习的基础上,学会运用迁移类推的方法,通过思考、交流、分析、解答,获得了解决这类问题的方法。又经过比较,使学生清楚地认识到两道题的联系与区别,提高辨别能力和解决问题的能力。

二、本节课目标完成情况。

在教学过程中,我紧紧围绕课前预设的三维目标实施教与学的双边活动,从教学实施的过程来看,基本上达到了预期的目标。大多数学生掌握了稍复杂问题的解决方法,尽管有些学生会做还不会说,大部分学生能够有根据、有步骤地解决问题。在学生学习的过程中,我能不断评价鼓励学生,使学生既掌握了知识,发展了能力,又使学生体验到了数学在生活中的应用,尝到了成功的快乐。

三、课件的应用。

解决问题,就是要解决生活中的问题。因此本节课上我用多媒体课件出示情境,把学生带入了一个个活生生的场面,使学生产生主动探究的愿望,培养了自主探索的精神,提高了自主探索的能力,发挥了多媒体课件在解决问题教学中的辅助作用。

四、教学中的不足。

1.课前复习时说的过细,学生弄清楚了这样做的道理,但费时较多,占用了后面的教学时间,致使教学过程前松后紧,练习部分处理得较为仓促,学生学会了“和倍”问题的解决方法,“差倍”问题掌握的同学不多。

2.解方程练的较少,中、下学生没有熟练掌握解方程的一般方法,制约了学生进一步的学习,也影响了教学进度。

3.因为多媒体的原因,使学生上课后不能立刻进行学习,耽误了几分钟的学习时间,同时影响了教学的顺利进行。

总之,教学是一项长期的工作,培养学生的各方面能力也要通过长期不懈的努力,只有这样,才能使学生牢固地掌握知识,逐步形成一些技能技巧,最终能够运用所学到的知识解决生活中的问题,才能完成自己的教学任务。

简易方程教学设计【第二篇】

方程是含有未知数的等式,因此我设计教学方程的概念是从等式引入的,教材采用连环画的形式,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克。然后在杯中倒入水,并设水重x克,让学生说出能用一个什么样的式子表示出来,让学生知道方程源于生活。通过引导学生观察一组图形的变化,逐步引出等式,从而由不等到相等,引出含有未知数的等式称为方程。

在此基础上,一方面让学生列举像方程这样的式子,并予以区别,强化方程的意义。另一方面通过三位小朋友写方程,让学生初步感知方程的多样性。

“做一做”让学生判断哪些是方程,使学生进一步巩固方程的意义。在这儿,一般只要求学生初步理解方程的意义,所以只要学生知道什么是方程,能判断就可,不必在概念上过分纠缠,更不必拓展太多,以免加重学生负担。

“你知道吗?”的阅读资料简要介绍了有关方程的一些史料。让学生只需感知,不作记忆的要求。

学情分析:

五年级的学生对方程这块内容是第一次正式接触,虽然在这学期开始的作业本中有几次方程的题出现,但对学生来说还是比较陌生的,在他们头脑中还没有过方程这样的表象,所以授新课就要从学生原有的基础开始,从他们知道的东西,如跷跷板到天平,然后再过渡到方程。在教学过程中还要注意把握学生的接受能力,这节课只要学生能理解和判断,不能过分纠缠概念上问题和其他课外的知识,如果要学生了解太多会加重学生的负担,反而使学生因难而失去学习的兴趣。基础不太好、理解能力不太强的学生在学习过程中可能会遇到对新的内容不容易接受,特别是概念课,所以让学生课前预习会对这些学生有一定的帮助。在课堂上多让学生看形象的事物,从而理解概念,帮助学生更好的学习。

1. 通过天平演示,使学生初步理解方程的意义;

2. 使学生能够判断一个式子是不是方程并能解决简单的实际问题;

3. 培养学生观察、描述、分类、抽象、概括、应用等能力。

重点难点:判断一个式子是不是方程;初步理解方程的意义。

课前准备: 课件、天平、带有磁铁的卡纸、彩色记号笔。

教学过程: 修改意见

同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有408位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:218+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏着的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

1.同学们,你们去过公园了吗?玩过翘翘板了吗,如果你和爸爸一起玩,会出现什么样的结果?(翘翘板摇晃不平衡)

师:怎样才能保持两边平衡呢?(让妈妈也加入)

小结;当两边重量差不多的时候,跷跷板基本保持平衡,就能很好的玩游戏了。

1、师:在数学中与翘翘板原理一样的工具,你知道是什么吗?(生答:天平)

2、介绍:(出示天平)这就是我们这节课要用到的称量工具——天平。天平是由天平秤和砝码组成的。砝码有不同,越大就越重。把要称量的物体放在左边的托盘,右边的托盘放上相应的砝码,当天平平衡、指针指在正中央,说明这个物体的重量就是砝码的重量。

2.课件出示第二幅图:一个天平左盘上放了一个玻璃杯,右盘上放了100 g重的砝码,正好平衡。

师:请看这幅图。

思考:看了这幅图你知道了什么?生答。

师:对,我们找到了这样一个等量关系,(卡片出示:1个空杯子=100g)

3. 课件出示第三幅图:一个天平左盘上放了一个加约150毫升水(红色)的玻璃杯,右盘上放了100 g重的砝码,天平左低右高。

师:如果我们在杯中加约150毫升的水呢?为了大家看得更清楚,老师在水中滴几滴红墨水。

问:这时发生了什么变化?(生能答:杯子里倒了水,水有重量,天平就不平衡了。)

问:如果水重x克,你能用一个式子表示天平两边的结果吗?

生回答后,课件、卡片出示:100+x>100

4.课件出示第四幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上加了100 g重的砝码,天平还是左低右高。

师:天平出现了倾斜,因为杯子和水的质量加起来比100克重,要使天平平衡,该怎么做?(增加砝码)对,要需要增加砝码的质量。

师:怎么样?刚才左低右高,现在呢?(生能答:还要加砝码)那就在加100 g重的一个砝码。(课件演示:右盘上再放100 g重的砝码,天平出现左高右低。)

师:现在什么情况?(生答:左高右低)这种情况你能用式子来表示吗?可以同桌讨论。

学生回答后课件、卡片出示: 100+x<300

问:观察列出的两个式子,有什么共同的地方?

这个问题可能稍有难度,教师可以引导:当天平两边不平衡,一边比一边重时,要表示两边的关系,我们就可以用这样的不等式表示。(板书:不等式)

问:能再举几个这样的不等式吗?

(学生列出不等式,教师选择两个写在卡片上贴于黑板。)

5. 课件出示第五幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上放了250 g重的砝码,天平平衡。

师:下面老师把其中一个100 g重的砝码换成50 g重的砝码。你再来观察一下。

(学生看到都说:平衡了)

问:谁来表示这个式子?

学生回答后课件、卡片出示:100+x=250

问:为什么用“=”呢?(平衡就是相等了)

问:哦,那这个式子与刚才两个不等式比较最大不同是什么?(生能答,不能教师引导:这个式子中间是等号,叫等式。板书:等式)

问:能再举几个这样的等式吗?

(生举例,教师选择三个写在贴于黑板的卡片上。)

这时黑板上的卡片有:

300+200=500 100+x<300

100+x>100 100+x=250

80+x>100 100+50<300

5×a=40 x+200 x+x=8

1.分类、建构概念

让全班观察黑板上的8个算式,根据它们的特点,小组讨论,试将他它们分类并说明理由。

学生讨论。

问:谁来说说你们是按照什么标准分的?

(1)如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的重点说,其余的口头交流。

(2)让按“是否含有未知数”分的学生把式子分成两堆。

问:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?(含有未知数)那这几个呢?(没有未知数)

问:你能把这一种(指含有未知数)再分成两类吗?怎么分?指名板演。

(或者让按“是否是等式”分的学生把式子分成两堆。

问:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?(是等式)那这几个呢?(不是等式)

问:你能把这一种(指是等式)再分成两类吗?怎么分?指名板演。

根据学生的思路来讲。)

问:你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)

师:像这样,含有未知数的等式我们把它叫做方程。(板书:像这样含有未知数的等式,叫做方程。)一起读一遍。(学生齐读)这也是我们今天这堂课要学习的内容。(板书课题:方程的意义)

2.理解、巩固概念

师:自己理解一下方程的概念,方程必须具备哪几个条件?(未知数和等式)

师:你会自己写出一些方程吗?(生答:会。)请四个学生到黑板上板演写两个,其他同学在作业纸上写。

写好后,请同学们用手势一起判断对错,说说你是怎么判断的。同桌互改。

小结:判断一个式子是不是方程,一看是不是等式,二看有没有未知数。

(出示课件)问:老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)

6+x=14 3+x 50÷2=25 ab=18

6+x>23 51÷a=17 x+y=18

问:通过这几道题的练习,你对方程有了哪些新的认识?

(1)未知数不一定用x表示。

(2)未知数不一定只有一个。

1.判断

下边哪些式子是方程?(课本54页“做一做”)

35+65=100 x -14>72

y+24 5x+32=47

28<16+14 6(a+2)=42

2.你知道吗?

课件动态显示关于方程的小知识。

你知道吗?早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料。一直到三百年前,法国数学家笛卡儿第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。

3.练练思维

孟老师今年的年龄加上7就是30岁,你知道老师今年几岁了吗?

某同学今年的年龄的2倍是22岁,他今年几岁?

4.提高智慧

小刚集邮共360张,小红集邮共400张,怎么才能使两人的邮票张数一样多?

5.数学游戏:小博士用他的手遮住了所写的内容。他想让你们猜猜他写的式子是不是方程。(用多媒体设计出手的形状盖在方格上)

(1)□ +x > 40 (不是)

(2)x÷□=80 (是)

(3)3×□=24 (不一定)

让学生判断并说明理由。

(第三题:如果方格中填的是未知数这个式子就是方程,如果填的是8就不是方程,填其它的数就是一个错误的算式。)

回想一下刚才我们上课开始写的那个表示我们全校师生总人数的式子,现在老师告诉你一共有432人,你能得到怎样一个方程并知道老师有多少人吗?(24人)好聪明!这是我们下节课将要学习的内容,希望同学们也能像今天一样积极动脑,脚踏实地地走好每一步,去解开更多生活中的未知数,去迎接更多新的挑战!

作业设计:

1.作业本25页。

2.口算一页。

板书设计:

方程的意义

其他式子

含有未知数的等式

3077+ x

等式

不等式

像这样含有未知数的等式,叫做方程。

简易方程教学设计【第三篇】

人教版小学数学教材五年级上册第62~63页及练习十四第1~3题。

1.借助天平及式子的分类操作,使学生初步了解方程的意义;能从形式上判别一个式子是否是方程;理清方程与等式的关系。

2.能根据简单的线段图、情境图列出方程,并能在教师引导下找到等量关系,经历利用等量关系进行方程模型建构的过程。

3.在对式子的分类、整理的教学活动中培养学生观察、描述、分类、抽象、概括及应用等能力。

抓住“等式”“含有未知数”两个关键词初步建立方程的概念。

方程与等式的关系;方程中等量关系的建立。

课件、写式子的卡片、磁钉。

一、认识天平,谈话铺垫

教师(出示天平图):这是什么?同学们知道天平的用途吗?

一般在称东西时,我们在天平的左边放上要称的东西,右边放上砝码。如果天平左右两边达到平衡,左边东西的质量就等于右边砝码的质量。这种平衡的状态如果用一个数学符号来表达,就是──等号。

二、探究新知

(一)天平演示,初步感知等与不等。

1.出示天平图1。

现在这种状态,你能用一个式子来表示吗?(板书:50+50=100)

2.(出示天平图2和图3)天平向左倾斜表示什么?如果水的质量用

g表示,那么杯子和水共重多少呢?(100+ )

3.如果老师在天平右边再加一个100 g的砝码,可能会出现什么样的情况?用式子来表示。

这三个式子体现在天平上分别是什么样的情况?咱们用手势来表示一下。

4.来看看究竟是哪种情况?(先出示天平图4,后出示天平图5)用式子来表示一下。

5.(出示教材第63页最上面的图)这样的图你能用一个式子表示它们的关系吗?

设计意图通过直观演示,感受等与不等。同时通过反馈和追问,帮助学生感受等式的意义。为下一环节中式子的分类及理解等式和不等式做好准备。从天平到式,再从式到天平图,在学生的头脑中利用天平建立左右相等的等式模型,为突破建立方程中的等量关系这一难点做好铺垫。

(二)分类整理,建构概念

1.观察黑板上出现的式子,尝试根据式子的特点进行分类(先请学生独立思考,再同桌进行交流。)

2.学生反馈,教师根据反馈在黑板上移动式子。

预设1:按左右相等和不等分类(补充等式和不等式);

预设2:按是否含有未知数分类。

注:教师在按照两种分类方式摆放式子时整理成如下表格所示:

等式

不等式

3.(指表格)像这样,含有未知数的等式称为方程(揭题)。

4.写方程:根据你的理解写2~3个方程,写完之后给同桌看看其是否为方程(教师在巡视过程中选择一些学生到黑板上写一写。)

5.说说黑板上同学写的是否为方程,并说说判断理由(主要使学生明确,判断一个式子是不是方程,一看是不是等式,二看有没有未知数。)

(三)概念辨析,理清等式与方程之间的关系

1.“做一做”第1题:请学生说说哪些式子是方程,并说说为什么(可以选择其中几个不是方程的式子,请学生说说怎样改一下就可以将其变成方程。)

2.这两个式子是否是方程呢?

反馈分析:

(1)式1:一定是。为什么?

(2)式2:一定是等式,可能是方程。

(3)思考:等式和方程有什么联系呢?

(4)引导画集合图,并引导得出:方程一定是等式,等式不一定是方程。

设计意图方程与等式的关系是本节课的教学难点,教学时,先通过分类整理让学生对等式与方程的关系产生直观、正确的感知;然后通过被蘸了墨水的式子的判别,进一步体会两者的关系;最后,通过韦恩图帮助学生加以明确。不仅突破了教学的难点,而且渗透了初步的集合思想。

三、实践反思,巩固提高

1.“做一做”第2题及练习十四第2题:看图列出方程。

学生练习并进行反馈。

反馈侧重:使学生明确,可以根据量相等来列出方程。

2.练习十四第3题:看情境图,思考数量关系再列方程。

(1)从图上你知道了什么?

(2)你能根据你知道的数量关系列出方程吗?

(3)学生自行根据数量关系列出方程,并进行反馈。

设计意图能用方程表达简单情境中的数量关系,也是《义务教育数学课程标准(20xx年版)》对本内容的要求,为从数量关系到等量关系的转变做好准备,这对于学生理解和掌握方程的知识至关重要。

四、总结回顾,介绍历史

1.你对方程印象最深的是什么?(每个同学说一点,后面的同学要和前面同学不一样。)

2.教师介绍方程的相关知识。(课件出示教材第63页“你知道吗?”的`内容)

设计意图把数学史融入课堂教学当中,一方面可以拓展学生的视野,让学生对方程的产生过程产生比较清晰的认识,知道数学是一个动态成长的科学,体会到数学的每一个理论和发展是一个漫长的过程。让学生在体会数学文化的价值的同时,产生探索的欲望。

简易方程教学设计【第四篇】

1、经历从生活情境到方程模型的建构过程。

2、理解方程概念,感受方程思想。

3、通过观察、描述、分类、抽象、概括、应用的学习活动过程达到学习水平的提高。

一、情境创设,初建相等关系模型。

1、师出示天平图,

认识吗?

师:天平可以称出物体的质量是多少。

2、(媒体出示三幅图)下面的三幅图中,哪一幅能称出两只苹果的质量?

(左右倾斜各一幅,平衡的一幅。图略)

学生会选择图3,老师顺着学生的思路出示图3天平平衡图

图3为什么能称出两只苹果的质量?

你能用一个式子表示出天平两边物体的质量关系么?

100+100=200

图1和图2为什么不能称出两只苹果的质量呢?

你也能用一个式子表示出天平两边物体的质量关系吗?

100+100>100、100+100<500

3、三个式子都是表示物体之间质量的关系,数学上把这样表示两边相等的关系的式子叫做等式。

你的小脑袋里有等式吗?说一个试试。

除了用加法表示的还有不一样的吗?(师板书学生说的其它的一些式子)

师:没想到,同学们对等式是这么的熟悉。

二、借助基础,拓展等式外延。

1、下面的几幅图中,天平两边物体的质量关系,哪些可以用等式表示?能表示的试着把它写下来,不能的思考可以用一个什么样的式子表示呢?

(书上四幅图略)

选一个等式说一说它表示什么意思?

天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)

2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。

3、比较:现在写的这些等式与刚才我们说的那些等式有什么不同吗?

突出含有未知数的等式

这些含有未知数的等式你见过吗?

生:没见过;也可能见过,如:用字母表示数中、求未知数x等。

三、进一步拓宽对等式的理解。

1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的一些现象,仔细看一看,这些生活中的现象之间的关系是不是也能用含有未知数的等式来表示呢?

(师出示四幅生活情境图)

(1)铅笔盒与笔记本共20元。

(2)借出的书与剩下的书共150本。

(3)3瓶相同的色拉油,每瓶x元,共8元。

三、明确特征,归纳概念。

其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的意义。(板书)

揭示数学上我们把含有未知数的等式叫做方程。

四、深刻领悟,挖掘内涵。

1、黑板上的其它式子为什么不是方程?

2、师:现在同学们知道什么是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生举手)

36-7=29、60+x>70、8+x

6+x=14、7+15=22、5y=40

活动结束了,但思考却刚刚开始,就等式和方程的关系你现在有什么话想说的吗?

(在活动中理解等式与方程的关系)

五、实践应用,拓展外延。

1、你能看图列出方程吗?

图1:天平(2x=500)

图2:四个物体元

图3: 两杯水共有450毫升

2、从文字表述中找出方程

(1)小明从家到学校有500米,他每分钟走50米,走了x分钟。

(2)张师傅每天做x个零件,用了6天做了780个零件。

(3)王涛放学回家后,去商店买了3本精装笔记本,每本y元。他付给售货员阿姨20元,找回2元。

3、李老师头脑中有一幅图,我把它用方程表示了出来,猜一猜,老师头脑中可能会是一幅什么样的图?

出示:5x=200(可提示:如天平图等)

个别交流的基础上同桌互说。

六、全课总结:学习到现在你有哪些收获?

从不能用方程表示到能用方程表示图中的数量关系的一种演变。

图1:买4个小熊猫玩具,每个x元,120元不够

图2:买3个,每个x元,120元还不够

图3:买2个,每个x元,120元正好

延伸:使两只水杯一样多你能有哪些办法?用方程表示,你能吗?

相关推荐

热门文档

22 1337023