首页 > 学习资料 > 小学教案 >

《比的应用》教案【汇编4篇】

网友发表时间 1691674

【阅读指引】阿拉题库网友为您分享整理的“《比的应用》教案【汇编4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

比的应用教案【第一篇】

目标

1.掌握一些常见等差等比数列综合问题的求解方法;

2.培养学生分析问题和解决问题的能力。

难点

难点是解决数列中的一些综合问题。

教学过程

例1.等差数列 的公差和等比数列 的公比都是d(d≠1),且 , , ,

⑴求 和d的值;

⑵ 是不是 中的项?如果是,是第几项?如果不是,说明理由。

例2.设等比数列 的公比为 , 前 项和为 ,若 成等差数列,求 的值.

例3.已知数列 的前n项和为 且满足 .

(1)判断 是否是等差数列,并说明理由;

(2)求数列 的通项 ;

例4.设 是正数组成的数列,其前n项和为 ,且对于所有正整数n, 与2的等差中项等于 与2的等比中项。

⑴写出的前3项;

⑵求 的通项公式(写出推理过程);

⑶令 , ,求 的值。

例5、已知数列 ,设 ,数列 。

(1)求证: 是等差数列;

(2)求数列 的前n项和Sn;

(3)若 一切正整数n恒成立,求实数m的取值范围。

例6.已知函数 ,数列 满足

(1)求数列 的通项公式;

(2)令 ,求 ;

(3)令 对一切 成立,求最小正整数m.

课后作业

1.设数列|an|是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 。

2.设等差数列 的公差 不为 , .若 是 与 的等比中项,则 _________。

3.若互不相等的实数a、b、c成等差数列,c、a、b成等比数列,且a+3b+c=10,则a=_______。

4. 已知等比数列 的前 项和为 且 。

(1)求 的值及数列 的通项公式。

(2)设 求数列 的前 项和 。

5.设数列的'前 项和为 ,已知

(1)设 ,求数列 的通项公式;

(2)若 ,求 的取值范围

6.设 为数列 的前 项和,若 ( )是非零常数,则称该数列为“和等比数列”.

(1)若数列 是首项为2,公比为4的等比数列,试判断数列 是否为“和等比数列”;

(2)若数列 是首项为 ,公差为 的等差数列,且数列 是“和等比数列”,试探究 与 之间的等量关系.

7.已知数列 是首项 ,公比q>0的等比数列,设 且 , 。

⑴求数列 的通项公式,

⑵设数列 的前项和为 ,求证数列 是等差数列;

⑶设数列 的前n项和为 ,当 取最大值时,求n的值。

二元一次不等式(组)与平面区域

二元一次不等式(组)与平面区域(第2时)

使用说明:

1.前认真预习本,完成本学案;

2.上认真和同学讨论交流,积极回答问题、板演,认真听老师点评;

3.下复习,整理归纳。

比的应用教案【第二篇】

1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?

学生汇报:

(1)男生人数是女生人数的( ), 男生人数和女生人数的比是( )

(2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

(3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

(4)全班人数是男生人数的( ),全班人数和男生人数的比是( )

(5)女生人数占全班人数的( ),女生人数和全班人数的比是( )

(6)全班人数是女生人数的( ),全班人数和女生人数的比是( )

2、口答应用题

六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

口答:100÷2=50(平方米)

提问:这是一道分配问题,分谁?(100平方米)

怎么分?(平均分)

六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?

在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们研究按比例分配问题。(板书:按比例分配)

指出:按比例分配就是把一个数量按照一定的比来分配。

相关推荐

阿拉题库 · 学习办公更轻松!

16 1691674