首页 > 学习资料 > 小学教案 >

梯形面积计算(精选4篇)

网友发表时间 1268222

【前言导读】此篇优秀教案“梯形面积计算(精选4篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

梯形面积的计算【第一篇】

梯形面积计算教学设计

教学目标: 1.使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。

2.使学生理解梯形面积的计算方法,能正确地计算梯形的面积。

3.培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。

教学重点: 理解梯形面积的计算方法,正确计算梯形的面积。

教学难点: 梯形面积计算方法的推导过程。

教学准备: 多媒体课件

教学过程

一.复习引入。

1.同学们已经掌握了平行四边形和三角形面积的计算。现在我就想考考同学到底掌握得怎么样?谁能够快速准确地说出这些图形的面积呢?

2.计算下面图形的面积。(单位:厘米)

3.我们先看第一个图形,它的面积hTtp://是多少?(300平方厘米)

你是怎样计算的?(20×15=300)

你的根据是什么?(平行四边形的面积=底×高)

你能说你的这个方法是怎么得出来的吗?(沿着平行四边形的一条高剪开,再把它从一边移动另一边,这样就拼成了一个长方形。)

4.那么第二个图形的。面积是多少呢?(36平方厘米)

你是怎样计算的?(12×6÷2=36)

你的根据是什么?(三角形的面积=底×高÷2)

你能说你的这个方法是怎么得出来的吗?(将一个一模一样的三角形沿一个顶点旋转180?,再沿边平移上去,这样就拼成了一个平行四边形。)

5.出示转化过程并小结:我们是把平行四边形、三角形分别转化成长方形、平行四边形这些我们已经学过的图形来计算出它们的面积的!

二.新课传授。

(一)面积计算方法的推导过程。

1.今天我还带来了另外一个图形,谁能告诉我这是什么图形?(出示梯形)

你怎么知道它是梯形?(只有一组对边平行)

2.提出质疑揭示课题:今天我们就一起来研究梯形面积的计算(板书),我们是否可以仿照平行四边形和三角形的方法,把梯形也转化成已学过的图形来计算它的面积呢?请同学们拿出准备好的梯形和剪刀,看看你能不能通过剪一剪、拼一拼把梯形也转化成我们已经学过的图形呢?

3.学生动手操作,分别展示成果。

(1)

请学生说出自己的想法和拼法。(将一个一模一样的梯形沿一个顶点旋转180?,再沿腰平移上去,这样就拼成了一个平行四边形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高没有变,面积是梯形的两倍。)

(2)

请学生说出自己的想法和拼法。(将梯形上底和下底对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180?,这样就拼成了一个平行四边形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高是原来梯形面积的一半,面积没有变。)

(3)

请学生说出自己的想法和拼法。(沿梯形一腰中点和对角顶点对折,再折线剪开,将上面的一半沿腰上的中点旋转180?,这样就拼成了一个三角形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的三角形的底是原来梯形的上底与下底的和,高是没有变,面积也没有变。)

4.我们用很多方法计算出了梯形的面积,但是在实际生活中,有许多东西象钢板等等是不能这样剪开来拼拼的,所以我们就需要知道计算梯形的面积规律。请同学以小组的形式讨论一下,你能从你的方法中得出什么计算的规律吗?

5.你是怎么得出这个规律的?

《梯形的面积》的教学设计及反思【第二篇】

教学内容:

教材95—96页梯形的面积及例3;第96页“做一做”;第98页练习二十一第6,7,8题。

教材分析:

本课试在学生认识了梯形的特征,掌握了长方形,正方形,平行四边形和三角形面积的计算,并形成了一定空间观念的基础上进行教学的,因此教材没有安排数方格的方法求梯形的面积,而是直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法,把梯形转化成我们已经学过的图形来计算它的面积,引导学生在主动参与探索的过程中,发现并掌握提醒的面积计算方法,让学生在学习的再创造过程中实现对新知识的意义的构建,解决新问题,获得新发展。

教材中多角度地推导出了梯形面积公式,并展示了三种方法:一是两个一样的梯形拼成一个平行四边形;二试把一个梯形剪成两个三角形;三是把梯形剪成一个平行四边形和一个三角形。通过学习能够提升学生的合作意识,培养学生多角度思考问题的能力。

教学目标:

知识与能力:

在探索活动中深刻体验和感悟梯形面积计算公式的推导过程,并能运用梯形的面积公式解决生活中的实际问题。

过程与方法:

通过动手操作,观察比较,发展学生的空间观念,并在动手操作的活动中,逐步培养学生归纳,推理和语言表达的能力。

情感,态度与价值观:进一步培养空间观念,不断发展空间想象力,体验数学再创造的乐趣,并获得个性化的发展。

教学重难点及突破:

重点:理解并掌握梯形面积公式的推导过程,会计算梯形的面积。

难点:理解梯形面积公式的推导过程。

教学设想:

本课教学由学生谈对梯形的认识和讲述平行四边形,三角形面积公式的推导方法引入,为后面的探究活动提供保障。在新课中,教师要向学生讲明探究梯形的面积的方法及合作的要求,可以通过多媒体展示出来,让学生完全按要求完成学习。接下来为学生的探究过程,学生利用自己准备好的梯形,通过分割法和组合法对图形进行重组,并用文字写出梯形面积的计算方法,然后在交流中找到最为简便的公式,并在教师的引导下写出字母公式。学生完成公式的推导之后要独立完成例3及“做一做”,在练习的同时提高学生对公式的理解和认识。除此之外,为了巩固学生所学知识,还要多收集一些习题,开拓学生的视野,提高学生的能力。

教学准备:

教师准备:

多媒体课件,练习题

学生准备:

前置作业,梯形若干个,彩笔,练习本。

教学设计:

一,复习旧知

师谈话:说一说你对梯形的了解。

学生自由发言,教师进行评价。

生1:梯形有上底,下底和高。

生2:梯形有等腰梯形和直角梯形。

……

师接着谈话:同学们,我们前面学习的平行四边形和三角形的面积公式是怎样推导出来的?

学生举手,教师指名回答。学生发言预设:

生1:平行四边形的面积试用割补法把它变成与它面积相等的长方形,由长方形面积推到出来的。

生2:三角形的面积是把两个完全相同的三角形拼成一个平行四边形,因为三角形的面积是这个平行四边形面积的一半,所以用平行四边形面积除以2,得到的就是三角形的面积。

……

师小结:同学们能不能用学过的这些方法设计一种推导方案,推导出梯形的面积计算公式呢?

板书课题:梯形的面积。

设计意图:通过师生交流揭示课题,提示学生可以把已学过的学习方法运用到新的学习情境中,为学生提供了创新的机会,变“要我学”为“我要学”,为下面的学习作好了铺垫。

二,探索新知

1,方法迁移,自主探究梯形的面积公式。

师谈话:下面请同学们运用我们学习的平行四边形和三角形的面积公式的方法推导一下梯形的面积公式吧!要看清要求,在小组研究中要分好工。

多媒体出示自学要求:

(1)做一做:利用手中准备好的梯形纸片,或拼或剪,转化成一个以前我们学过的图形。

(2)想一想:可以转化成什么图形?与梯形有哪些联系?

(3)说一说:你发现了什么?试着推导梯形面积的计算公式。

(4)瑶以小组为单位,进行合作学习。

学生小组探究梯形面积的计算方法,教师参与学生的交流。

学生汇报结果,教师评价并板书。学生汇报预设:

生1:我们组把梯形剪成一个平行四边形与一个三角形(如下图),梯形的面积等于一个平行四边形的面积与一个三角形面积之和,平行四边形的面积等于梯形的上底乘高,三角形的高就是梯形的高,三角形的底是梯形的下底减去上底,分别求出面积再相加,梯形的面积=上底×高+(下底—上底)×高÷2。

生2:我们小组把梯形剪成两个三角形(如下图),小三角形的底试梯形的上底,大三角形是梯形的`下底,高是一样的,所以梯形的面积=上底×高÷2+下底×高÷2

生3:我们组用两个完全一样的梯形拼成一个平行四边形(如下图),得出拼成的平行四边形的面积试梯形面积的2倍,平行四边形的高与梯形的高相等,平行四边形的底等于梯形的上底加下底之和,从而推出梯形面积=(上底+下底)×高÷2。

师:大家通过探究推导出了梯形面积的计算公式,从不同的角度去想,推导出的公式也不相同,请同学们观察一下三个公式,哪一个最简便?

生齐:第三种。

师:通过我们多角度的实验,可以推导出梯形面积公式=(上底+下底)×高÷2(师板书)。如果上底用子母a表示,下底用字母b表示,高用字母h表示,那么梯形面积公式用字母公式可以表示为什么呢?

学生举手,教师指名回答。

S=(a+b)×h÷2

设计意图:在这个环节中,教师防守让学生去实践,去探索,学生在研究梯形面积的过程中,不仅掌握了梯形的面积计算公式,更有力地促进了学生思维能力的发展和问题策略意识的形成。

2,教学例3

出示例3

学生独立完成,教师对学生进行指导。

学生完成后全班交流,教师进行方法指导。

学生发言预设:从图中可知大坝的上底是36m,下底是120m,高是135m,利用梯形的面积计算公式S=(a+b)h÷2可求出大坝的面积是(36+120)×135÷2=10530(m2)

3,完成教材96页“做一做”

请你说一说“做一做”的习题所表达的意思。

学生举手,教师指名回答。

学生独立完成习题,教师对学困生进行指导。

学生汇报,教师评价。

设计意图:通过学生阐述解题过程,能够深化学生对公式的理解。

三,巩固应用

(一)预习答疑

1,完成“旧知链接”习题

学生回答对梯形的认识及研究平行四边形,三角形面积的方法。

说明:通过复习这些知识点,让学生加深对平行四边形,三角形面积公式的推导过程的认识,为本课学生推导梯形面积公式奠定基础。

2,完成“新知速递”习题。

学生全班订正答案。

教师对方法进行小结。

(二)教材习题

1,练习二十一第6题

师提问:怎样计算梯形的面积?

学生举手,教师指名回答。

学生独立完成习题,教师对学困生进行指导。

学生汇报,全班评议。

2,练习二十一第7题

师:怎样列方程解决问题?

学生举手,教师指名回答。

学生独立完成练习,并全班汇报订正,教师进行方法小结。

(三)课堂作业

1,想一想,填一填。

两个完全相同的梯形可以拼成一个(),这个平行四边形的底等于(),这个平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的(),因为平行四边形的面积等于(),所以梯形的面积等于()。

2,计算下面梯形的面积。(单位:cm)

3,把一块平行四边形的铁片剪去一个角(如下图中的阴影部分,单位:cm),剩下部分的面积试多少平方厘米?

4,求下图阴影部分的面积

教学反思:

新的数学课程标准指出:教师不能只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在于教师对教材的把握。梯形的面积一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的,学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识进行教学,整个教学设计充分运用猜想,探索,验证等学习方式,给每个学生提供思考,表现,创造的机会,使他们称为知识的发现者,创造者,能否培养学生自我探究和实践的能力。针对本课教学设计主要有以下几点思考:

1,动手操作,培养探索能力。在推导梯形面积计算公式时,教学设计安排学生合作学习,防守让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生用过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形,再通过“拼,剪,割”的动手操作活动,看一看能转化成什么图形,然后引导学生思考讨论:转化的图形与原梯形有什么关系?通过学生自主探索的实践活动,让学生亲自参与面积公式的推导过程,真正做到“知其然,也知其所以然”,而且能让学生的思维能力,空间感受能力,动手操作能力都能得到锻炼和提高。

2,重视学生解决问题的能力的培养。在学生验证自己的想法是否正确时,瑶鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识,在此基础上归纳出梯形面积的计算方法。这种方式的学习,既能够使学生理解,掌握梯形的面积公式,同时又能够培养学生获取知识的能力。

梯形面积计算【第三篇】

梯  形  面  积  的  计  算

教学内容:小学数学第九册80页

教学目标 :

1、使学生发现梯形面积公式的推导方法,理解公式的形成,并能运用公式解决简单的实际问题,发展实践能力。

2、通过对面积公式的探索,培养学生观察比较、动手操作的能力,发展空间观念。

3、结合教学内容,渗透“转化”的教学思想,培养学生初步的创新思维能力。

教学重点:发现、理解和应用公式。

教学难点 :理解公式的推导过程

教具准备:计算机软、硬件一套;两个完全一样的直角梯形拼成的长方形;两个完全一样的梯形拼成的平行四边形;标有上、下底和高及数据的一般梯形、等腰梯形、直角梯形各一个。

学具准备:每个学生准备两个完全一样的一般梯形、直角梯形、等腰梯形和剪刀。

教学过程 :

一、迁移诱导,激发参与兴趣

1、启发学生回忆三角形的面积推导公式。

2、板书课题,引入新课。

二、实验操作,引导参与探究

1、转化

学生分成四人小组进行学习。

独立拿出准备好的各种梯形,拼成学过的图形。

学生拼摆,教师对不同层次的学生,及时给予点拨和鼓励。

2、观察

学生分组,结合拼成的平行四边形观察、讨论。教师巡视,注意点拨。

板书如下:梯形面积                拼成的平行四边形面积的一半

平行四边形的底                 梯形是上底+下底

平行四边形的高                梯形的高

3、推导

学生分组讨论,教师巡视,注意点拨。

学生反馈,教师注意用规范的语言进行调控。

板书如下:

平行四边形面积=          底     ×       高

梯  形  的  面  积=(上底+下底)×高÷2

S=(a+b)×h÷2

提问:计算梯形的面积为什么除以2?

三、反馈调节,巩固参与成果

1、引导实际应用,巩固梯形面积公式

2、分层训练,培养能力

3、发展提高,深化知识

五年级数学上册《梯形的面积》的教学反思【第四篇】

今天,我执教的是《梯形的面积》一课,这节课的教学目标是:在实际情境中,让学生认识计算梯形面积的必要性;在学生自主探索的活动中,经历推导梯形面积公式的过程;能运用梯形面积的计算公式,解决相应的实际问题。从整个教学过程看,这一目标得到了充分的落实和体现。梯形面积的计算方法的推导,正确计算梯形的面积,作为教学重点、难点,也贯穿于整个教学环节中。

对于本节课,我觉得有以下几点值得思考:

1、尊重学生的认知规律,注重知识的前后联系。

我在设计教学时,就关注学生已有的知识、水平和经验。由于学生学过了平行四边形和三角形的面积,而梯形的面积公式推导方法与三角形的面积公式推导方法有很大的相似之处,我就放手让学生自己利用前面的学习经验,推导出梯形的面积公式。

2、以学生的活动为主,实现生生互动。

本节课力求让学生自己去发现和概括梯形的面积公式,在探究的过程中发展学生思维的创造性。为了达到这一目的,我让学生动手操作,分组合作探究,初步概括出梯形的面积公式。这样,通过“剪、移、转、拼”的活动,让学生真正亲历知识的探究过程。同时,又由于各项活动的设计环环相扣,步步深入,不仅激发了学生探究学习的兴趣,同时学生思维深度和广度也得到了有效的培养。

3、学生自主探索的活动在时间上给以保证

本节课一系列活动的设计是为了学生给充足地用眼看,用手做,用耳听,用嘴说, 用脑想的时间和空间,让学生尽情的`表现和发展自己,每一位学生都在亲自实践中认识理解了新知。充分体现了教师指导者,参与者的作用。当学生受现有知识的制约,推导概括公式思维停滞时,我进行点拨诱导,促其思维顺畅,变通,最后使学生明确,尽管拼摆的方法不同,但都达到验证了梯形的面积公式的目的。

这节课的教学已经结束,自己感觉教学过程顺畅,是一节自己比较满意的课。但对于很多细节,觉得仍需要推敲,相信自己会在今后的教学中不断探索,使自己的教学日趋成熟、完善。

相关推荐

热门文档

16 1268222