首页 > 学习资料 > 教学设计 >

初中数学教学设计【最新4篇】

网友发表时间 808900

【阅读指引】阿拉题库网友为您分享整理的“初中数学教学设计【最新4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

初中数学教学设计模板【第一篇】

一。一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:

(1)组成不等式组的不等式必须是一元一次不等式;

(2)从数量上看,不等式的个数必须是两个或两个以上;

(3)每个不等式在不等式组中的位置并不固定,它们是并列的。

二。一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:

(1)先分别求出不等式组中各个不等式的解集;

(2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集。

三。不等式(组)的解集的数轴表示:

一元一次不等式组知识点

1、用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;

2、不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;

3、。我们根据一元一次不等式组,化简成最简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。

说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。

四。求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。

一元一次不等式组考点分析

(1)考查不等式组的概念;

(2)考查一元一次不等式组的解集,以及在数轴上的表示;

(3)考查不等式组的特解问题;

(4)确定字母的取值。

一元一次不等式组知识点误区

(1)思维误区,不等式与等式混淆;

(2)不能正确地确定出不等式组解集的公共部分;

(3)在数轴上表示不等式组解集时,混淆界点的表示方法;

(4)考虑不周,漏掉隐含条件;

(5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;

(6)对含字母的不等式,没有对字母取值进行分类讨论。

初中数学教学教案【第二篇】

目标

1.联系生活中的具体事物,通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的基本特征,会识别并能做出一些简单的轴对称图形。

2.在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生对数学学习的积极情感。

重点难点

理解轴对称图形的基本特征

教具

准备 剪刀、纸(含平行四边形、字母N S)、教学挂图、直尺

教学方法

手段 观察、比较、讨论、动手操作

教学过程

一。新课

1.教师取一个门框上固定门的铰连让学生观察是不是左右对称?

2.出示教学挂图:天安门、飞机、奖杯的实物图片

将实物图片进一步抽象为平面图形,对折以后问学生发现了什么?

生:对折后两边能完全重合。

师;对折后能完全重合的图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

教师先示范,让学生认识天安门城楼图的对称轴,然后让学生再找出飞机图、奖杯图的对称轴各在哪里。

3.练习题:(出示小黑板)

(1)P57“试一试”

判断哪几个图形是轴对称图形?试着画出对称轴。

估计学生会将平行四边形看作是轴对称图形,可让两个学生到讲台前用平行四边形纸对折一下,看对折以后两部分是否完全重合。由此得出结论;平行四边形不是轴对称图形。

(2)用剪刀和纸剪一个轴对称图形。

教学

过程 二。练习

1.出示挂图:(p58“想想做做”第1题)

判断哪些图形是轴对称图形?

生:竖琴图、轿车图、五角星图、铁锚图、科技标志图、中国农业银行标志图

师:钥匙图和紫荆花图为什么不是?

生:因为对折以后两部分没有完全重合。

2.看书p58“想想做做”第2题

判断哪些英文字母是轴对称图形?

生:A、C、T、M、X(有可能有的学生没有选C,还有可能有的学生选N、S、Z)

师:没有选C的同学除了竖着对折,看看横着、斜着对折你有没有去试一试?认为N、S、Z是轴对称图形的我请两个学生到讲台前用表示字母N、S的纸对折一下,看看对折以后两部分有没有完全重合?

学生试完以后会发现两部分没有完全重合。

教师再将字母N横过来就变成了字母Z,同样道理,两部分也不会完全重合。

初中数学教学设计【第三篇】

一、案例实施背景

本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。

二、案例主题分析与设计

本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。 《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同

时通过小组内学生相互协作研究,培养学生合作性学习精神。

三、案例教学目标

1、知识与技能:

掌握科学记数法的方法,能将一些大数写成科学记数法。

2、过程与方法:

在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

3、情感态度与价值观:

通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。

四、案例教学重、难点

1、重点:

正确运用科学记数法表示较大的数

2、难点:

正确掌握10的幂指数特征,将科学记数法表示的数写成原数

五、案例教学用具

1、教具:多媒体平台及多媒体课件、图片

六、案例教学过程

一、创设情境,兴趣导学:

1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?

2、展示课本第63页图片,现实中,我们会遇到一些比较

大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。

师:(展示刚才演示过的3个大数)我们能不能找到更好的记数方法使下列各数更加便于读、写?请同学们六个人一组,分组进行讨论。

(1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000

生1:答:亿,640万,3亿。

师:回答正确。这是数字加上单位的记数方法,在小学已经学过,是比较常用的一种方法,可是它有一定的局限性。如果我在3亿后面再加上好多个0,那么这种记数方法还好用吗? 生:不好用。(让学生意识到以前所学的方法不够用了) 师:接下来我们一起来探索新的记数方法。

分析:在读写大数时使学生感觉到不方便,从实际生活的需要,自然引入课题,需要寻找一种更简单的方法记数,为新课创设了良好的问题情境。

二、尝试探索,讲授新课:

1、探索10n的特征

计算一下102、103、104、105、1010你发现什么规律? 102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000

(观察并思考,小组讨论)

(1)结果中“0”的个数与10的指数有什么关系?

(2)结果的位数与10的指数有什么关系?

2、练习:将下列个数写成只有一位整数乘以10n的形式。

(1)500(2)3000(4)40000

师:(学生完成之后)可见这种表示方法不仅书写简短,同时还便于读数。这就是我们本节课研究的内容—科学记数法。

3、分析:

通过教师引导,学生小组讨论,合作探究,成功地找到表示大数的简便记数方法——科学记数法。

4、科学记数法:

像上面这样,把一个大于10的数表示成 a×10n的形式(其中1≤a<10,a是整数数位只有一位的数,n是整数),这种记数方法叫做科学记数法。

(思考,小组讨论)

10的指数与结果的位数有什么关系?

分析:这是本节课的重难点:10的幂指数n与原数的整数位数之间的关系。从特殊数据出发,寻找解决问题的方案,这符合“特殊到一般”的认知规律。在探究过程中,学生的探究活动体现了“化繁为简”、“分析归纳”的数学思想。

三、巩固新知,知识运用:

将下列各数写成科学记数法形式。

(1)23 000 000

(2)453 000 000

(3)13 400 000 000 000 000米

用科学记数法表示是多少米?

分析:学生的模仿能力强,在分析讨论10的指数与结果的位数有什么关系时,会与前面曾经讨论过的10n联系起来,也可以对知识进行迁移和回顾。再加上学生好奇心都特别强,很想将自己总结出来的结论加以应用,针对以上学生特点,给出相应的练习题。这样学生能够体会到学以致用的乐趣,从而调动学生自主学习的积极性。

(观察并思考,小组讨论)

如何将一个用科学记数法表示的数写成原数?

a×10n将a的小数点向右移动n位原数

分析:这是本节课另一个重点,也是知识的逆向巩固,学生通过寻找写出原数的方法,更加明白在写科学记数法时,如何确定10的指数,同时也学会了如何写出原数。

七、教学反思:

数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好

地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。

初中数学教学设计【第四篇】

一。教学目标

1.知识与技能

(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。

(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。

2.过程与方法

(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。

(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。

3.情感、态度、价值观

(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。

(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。

二。教学重点与难点

教学重点:探求π-a的诱导公式。π+a与-a的诱导公式在小结π-a的诱导公式发现过程的基础上,教师引导学生推出。

教学难点:π+a,-a与角a终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。

三。教学方法与教学手段

问题教学法、合作学习法,结合多媒体课件

四。教学过程

角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值怎么求呢?先看一个具体的问题。

(一)问题提出

如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题。

问题1求390°角的正弦、余弦值。 一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系。即有:sin(a+k·360°) = sinα,

cos(a+k·360°) = cosα, (k∈Z) tan(a+k·360°) = tanα。

这组公式用弧度制可以表示成sin(a+2kπ) = sinα, cos(a+2kπ) = cosα, (k∈Z) (公式一) tan(a+2kπ) = tanα。

(二)尝试推导

如何利用对称推导出角π-a与角a的三角函数之间的关系。

由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等。反过来呢?如果两个角的三角函数值相等,它们的终边一定相同吗?比如说:

问题2你能找出和30°角正弦值相等,但终边不同的角吗?

角π-a与角a的终边关于y轴对称,有 sin(π-a) = sina,

cos(π-a) =-cosa,(公式二) tan(π-a) =-tana。

〖思考〗请大家回顾一下,刚才我们是如何获得这组公式(公式二)的? 因为与角a终边关于y轴对称是角π-a,利用这种对称关系,得到它们的终边与单位圆的交点的纵坐标相等,横坐标互为相反数。于是,我们就得到了角π-a与角a的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。

(三)自主探究

如何利用对称推导出π+a,-a与a的三角函数值之间的关系。

刚才我们利用单位圆,得到了终边关于y轴对称的角π-a与角a的三角函数值之间的关系,下面我们还可以研究什么呢?

问题3两个角的终边关于x轴对称,你有什么结论?两个角的终边关于原点对称呢?

角-a与角a的终边关于x轴对称,有: sin(-a) =-sina, cos(-a) = cosa,(公式三) tan(-a) =-tana。

角π+a与角a终边关于原点O对称,有: sin(π +a) =-sina,

cos(π +a) =-cosa,(公式四) tan(π +a) = tana。

上面的公式一~四都称为三角函数的诱导公式。

(四)简单应用

例求下列各三角函数值:

(1) sinp;

(2) cos(-60°);

(3)tan(-855°)

(五)回顾反思

问题4回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会?

知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系。主要体现了化归和数形结合的数学思想。具体可以表示如下:

(六)分层作业

1、阅读课本,体会三角函数诱导公式推导过程中的思想方法;

2、必做题 课本23页13 3、选做题

(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?

(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?

相关推荐

热门文档

22 808900