首页 > 学习资料 > 教学设计 >

初中数学教学设计最新4篇

网友发表时间 2995152

【阅读指引】阿拉题库网友为您分享整理的“初中数学教学设计最新4篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

初中数学设计教案【第一篇】

一 、教学目标

(一)基础知识目标:

1。理解方程的概念,掌握如何判断方程。

2。理解用字母表示数的好处。

(二)能力目标

体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。

(三)情感目标

增强用数学的意识,激发学习数学的热情。

二、教学重点

知道什么是方程、一元一次方程,找相等关系列方程。

三、教学难点

如何找相等关系列方程

四、教学过程

(一)创设情景,引入新课

由学生已有的知识出发,结合章前图提出的问题,激发学生进一步探究的欲望。

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题。

(二)提出问题

章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄到翠湖的路程有多远?

你会用算术方法解决这个实际问题么?不妨试一下。

如果设王家庄到翠湖的路程为x千米,你能列出方程吗?

根据题意画出示意图。

由图可以用含x的式子表示关于路程的数量,

王家庄距青山 千米,王家庄距秀水 千米,

由时间表可以得出关于路程的数量,

从王家庄到青山行车 小时,王家庄到秀水 小时,

汽车匀速行驶,各路段车速相等,于是列出方程:

= (1)

各表示的意义是什么?

以后我们将学习如何解出x,从而得到结果。

例1 某数的`3倍减2等于某数与4的和,求某数。

例2 环行跑道一周长400米,沿跑道跑多少周,可以跑3000米?

五、课堂小结

用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用到已知数,而方程是根据问题中的等量关系列出的等式,其中有已知数,又有未知数,有了方程后人们解决很多问题就方便了,通过今后的学习,你会逐步认识,从算式到方程是数学的进步。

六、作业布置

习题3。1 第1,2两题

初中数学教学设计【第二篇】

一、内容和内容解析

(一)内容

概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

(二)内容解析

现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

二、目标和目标解析

(一)教学目标

1.理解不等式的概念

2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念

4.用数轴来表示简单不等式的解集

(二)目标解析

1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

三、教学问题诊断分析

本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

四、教学支持条件分析

利用多媒体直观演示课前引入问题,激发学生的学习兴趣.

五、教学过程设计

(一)动画演示情景激趣

多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.

(二)立足实际引出新知

问题一辆匀速行驶的汽车在11︰20距离a地50km,要在12︰00之前驶过a地,车速应满足什么条件?

小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.

(三)紧扣问题概念辨析

1.不等式

设问1:什么是不等式?

设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.

2.不等式的解

设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.

老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式

3.不等式的解集

设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.

老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.

4.解不等式

设问1:什么是解不等式?由学生回答.

老师强调:解不等式是一个过程.

设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.

(四)数形结合,深化认识

问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.

设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.

(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题

1、什么是不等式?<的解集,也是不等式>50

2、什么是不等式的解?

3、什么是不等式的解集,它与不等式的解有什么区别与联系?

4、用数轴表示不等式的解集要注意哪些方面?

设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.

(六)布置作业,课外反馈

教科书第119页第1题,第120页第2,3题.

设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

六、目标检测设计

1.填空

下列式子中属于不等式的有___________________________

①x +7>

②x≥ y + 2 = 0

③ 5x + 7

设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.

2.用不等式表示

① a与5的和小于7

② a的与b的3倍的和是非负数

③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.

初中数学教学设计【第三篇】

课题

正比例函数

一 教学目标

1.通过案例理解正比例函数,能列出正比例函数关系式 2.教会学生应用正比例函数解决生活实际问题的能力

二 教学重点

理解正比例函数的概念

三 教学难点

利用正比例函数解决生活实际问题

四 教学过程

提出问题

《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了21000千米,耗费了他150天时间。

(1) 阿甘大约平均每天跑步多少千米?

(2) 阿甘的行程y(km)与时间x(天)之间有什么关系?

(3) 阿甘一个月(30天)的行程是多少千米?

生 列算式回答 师 点评总结

2.写出下列变量间的函数表达式

(1) 正方形的周长l和半径r之间的关系

进一步抽象问题让学生思考

(2) 大米每千克四元,则售价y元与数量x(kg)的函数关系式是什么?

(3) 下列函数关系式有什么共同点?(小组合作)

分析共同点和不同点,找出规律 (1) y=200x

(2) l=2∏r (3) m= 生回答,师点评 引入新课

1.正比例函数的概念:

一般地,形如y=kx (k≠0)的函数,叫做正比例函数,其中k叫做比例系数。板书概念,引导学生分析正比例函数的定义

2 例题讲解

例1 在同一坐标系里,画出下列函数的图像: y= y=x y=3x 解: 略

掌握函数图像的画法:列表,描点,连线 3.练习

(1)已知正比例函数y=kx.当 x=3 时 y=6 。求 k的值

(2) 一种笔记本每本的单价为3元。则销售金额y元与销售量x之间的关系式是怎样的? 当销售金额为360元时,则售出了多少本这种笔记本?

四 小结

五 课外作业

反思

由于函数的概念比较抽象,学生不容易理解。而理解函数的概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。

数学初中教学设计【第四篇】

教学设计示例一——公式

教学目标

1、了解公式的意义,使学生能用公式解决简单的实际问题;

2、初步培养学生观察、分析及概括的能力;

3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式、

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例二——公式

一、教学目标

(一)知识教学点

1、使学生能利用公式解决简单的实际问题、

2、使学生理解公式与代数式的关系、

(二)能力训练点

1、利用数学公式解决实际问题的能力、

2、利用已知的公式推导新公式的能力、

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践、

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美、

二、学法引导

1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2、学生学法:观察分析推导计算

三、重点、难点、疑点及解决办法

1、重点:利用旧公式推导出新的图形的计算公式、

2、难点:同重点、

3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差、

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式、

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏、在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题、

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)。解释三角形,梯形面积公式

教法说明让学生感知用割补法求图形的面积。

(二)探索求知,讲授新课

师:下面利用面积公式进行有关计算

(出示投影2)

例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。

师生共同分析:

1、根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

2、题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)

学生口述解题过程,教师予以指正并指出,强调解题的规范性。

教法说明

1、通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量。

2、用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯。

(出示投影3)

例2如图是一个环形,外圆半径,内圆半径求这个环形的面积

学生讨论:

1、环形是怎样形成的、

2、如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导。

评讲时注意:

1、如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算。

2、本题实际上是由圆的面积公式推导出环形面积公式。

3、进一步强调解题的规范性

教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径。

测试反馈,巩固练习

(出示投影4)

1、计算底,高的三角形面积

2、已知长方形的长是宽的1。6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t

3、已知圆的半径,,求圆的周长C和面积S

4、从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。

(1)求A地到B地所用的时间公式。

(2)若千米/时,千米/时,求从A地到B地所用的时间。

学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演、

教法说明面向全体,分层教学,能照顾两极,使所有的同学有所发展、

师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式、

八、随堂练习

(一)填空

1、圆的半径为R,它的面积________,周长_____________

2、平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________

3、圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________

(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,V是多少?

九、布置作业

(一)必做题课本第___页x、x、x第___页x组x

(二)选做题课本第___页___组x

相关推荐

热门文档

22 2995152