首页 > 学习资料 > 教学设计 >

初中数学有理数教学设计【最新5篇】

网友发表时间 2196690

【导言】此例“初中数学有理数教学设计【最新5篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

小学数学数轴教案【第一篇】

§ 数轴

教学目标: 1. 知道什么是数轴,如何画数轴。

2. 知道如何将有理数在数轴上表示出来,能说出数轴上表示有理数的点所表示的数。知道任一个有理数在数轴上都有唯一的点与之对应。

教学重点: 学习数轴,用数轴上的点表示有理数。教学难点:

利用数轴学习有理数的大小性质。教学过程:

一、引入:

请读出下面温度计所表示的温度:

二、讲授新课:

1.考察温度计,直接给出数轴的定义。2.讲解例1。

提问:在数轴上,已知一点p表示数(-5),如果数轴上的原点不选在原来位置。改选在另一位置,那么p对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生提出:数轴的三要素缺一不可。3.小结:

如何根据数轴的定义画一条数轴?如何在数轴上画出表示有理数的点? 4.随堂练习:

1.教科书第54页练习第1,2,3题。

2.补充练习:在数轴上能否实际画出表示一亿万分之一的点?这个点存在吗?(答:很难画出;存在。)

四、课外作业 1.

2.补充题:

(1)画一条数轴并画出分别表示±,±,±的各点。(2)画一条数轴并画出分别表示1000,2000,5000的各点。

注:以上两个补充题的目的是,用数轴表示已知数时,要根据已知数适当地选择单位长度和坐标原点的位置。

(3)在数轴上标出到原点距离小于3的整数所表示的点。(4)在数轴上标出-5和+5之间的所有整数的点。

数学有理数教学设计设计思想【第二篇】

从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

数学有理数教学设计学生学习情况分析【第三篇】

(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

(2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

《数轴》教案【第四篇】

初中数学说课稿-《数轴》老师们:您们好!非常高兴能有机会和大家来交流说课活动,谨此向在座的老师们学习。           我说课的内容是华师大版九年义务教育七年级教科书代数第一册第二章第二节“数轴”的第一课时内容。            一:教材分析:            本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。            二:教学目标:            根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:            1. 使学生理解数轴的三要素,会画数轴。            2. 能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示            3. 向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。            三:教学重难点确定:            正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重点,建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点。            四:学情分析:            ⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。             ⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。             ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。            ⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。             五:教学策略:             由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。            为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了七个教学环节:            (一)、温故知新,激发情趣             (二)、得出定义,揭示内涵            (三)、手脑并用,深入理解            (四)、启发诱导,初步运用            (五)、反馈矫正,注重参与            (六)、归纳小结,强化思想            (七)、布置作业,引导预习            六:教学程序设计:            (一)、温故知新,激发情趣:            首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:            (1)零上5°C用 5 表示。            (2)零下15°C 用 -15 表示。            (3)0°C 用 0 表示。            然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?答案是肯定的,从而引出课题:数轴。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。            (二)、得出定义,揭示内涵:            教师设问:到底什么是数轴?如何画数轴呢?             (1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。)            (2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。)            (3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)            由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。            画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”(通过教师的亲切的语言启发学生,以培养师生间的默契)            通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。            至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。            (三)、手脑并用,深入理解:            1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?            A、            B、            C、            D、            E、            F、            A、B、C三个图形从数轴的三要素出发,D和F是学生可能出现的错误,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。            2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)            学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。            我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。            (四)、启发诱导,初步运用:            有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。            安排课本23页的例1,            利用黑板上的例题图形让学生来操作,教师提出要求:            1、要把点标在线上 2、要把数标在点的上方            通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。            当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。            (五)、反馈矫正,注重参与:            为巩固本节的教学重点让学生独立完成:            1、课本23页练习1、2            2、课本23页3题的(给全体学生以示范性让一个同学板书)            为向学生进一步渗透数形结合的思想让学生讨论:            3、数轴上的点P与表示有理数3的点A距离是2,            (1)试确定点P表示的有理数;            (2)将A向右移动2个单位到B点,点B表示的有理数是多少?            (3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少?            先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。            (六)、归纳小结,强化思想:            根据学生的特点,师生共同小结:            1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?            2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?            让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。            (七)、布置作业,引导预习:            为面向全体学生,安排如下:            1、全体学生必做课本25页1、2、3            2、最后布置一个思考题:            与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何?            (来引导学生养成预习的学习习惯)            七:板书设计:(略)            总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。            以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢。

《数轴》教案【第五篇】

教学重点与难点

教学重点:正确理解数轴的概念和用数轴上的点表示有理数。

教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形的结合的思 方法是本节课的教学难点。

教学目标

1、 理解数轴的概念,会画数轴;

2、 知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应;会利用数轴解决有关问题。

3、 通过生活中的实例,由直观认识到理性认识,从而建立数轴概念;通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法,进而初步认识事物之间的联系性。

教材处理

本节一课时完成,将从生活中的实例入手,引导学生由直观认识到理性认识,从而自然建立数轴概念,进而探究数轴的画法、作用、数与点的对应。

教学方法

通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。整节课以观察、动手、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,并教给学生“多观察、善动脑、大胆猜、勤钻研”的研讨式学习方法。教学中给学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

教学过程

一、问题解决 引入实例

(设计说明:从生活中的实例出发引出数轴,贴近生活,直观具体,易于学生接受,同时能够调动学生自主学习的兴趣和积极性。)

问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和米处分别有一棵柳树和一棵杨树,汽车站西3米和米处分别有一棵槐树和一根电线杆,你能画图表示这一情境吗?

学生会画一条直线表示马路,并在直线的左、右侧分别标上西、东,在直线上取一点O表示车站的位置,规定一个单位长度表示1米,于是点O的右边距离点分别3个和个单位的点A和点B,分别表示柳树和杨树的位置,点O的左边距离点3个和个单位的点C和点D分别表示槐树和电线杆的位置。

二、提出问题感受特征

问题2: 怎样用数简明地表示这些树、电线杆与车站的相对位置关系呢?(用数体现出方向、距离的不同)

规定从左向右表示从东到西,把点O左右两边的数分别用负数和正数表示。由此可见,正数,0和负数可用一条直线上的点表示出来。

问题3:你还能举出生活中用直线上的点表示数的例子吗?

学生思考并讨论交流后可得出,例如:温度计、杆秤、门牌号码……。

可以通过多媒体课件展示温度计(显示不同的度数),让学生体验读取温度,并比较各温度计上所显示 的温度的高低,使学生充分体验和认识温度计的设计特点,让学生再次体会数与形的对应关系。

(教学说明:根据学生的生活经验,学生在画图的过程中,能够认识到要描述马路上这三棵树、电线杆与车站的相对位置关系,既要考虑距离,又要考虑方向;但由于学生刚刚学习有理数中的正负数,对正负数意义的理解不是很深刻,因此他们可能想不到用正负来体现物体

方向的相反,因此可以提出问题2加以引导,从而让学生认识到,我们可以用正数、0、负数,来描述直线上点的位置,反过来,正数、0、负数可以用直线上的点来表示,借助于这一情景,让学生非常自然的初步感受到数与形的结合。问题三的设计让学生再次体会数与形的对应关系,为数轴的引出做好充分的准备。)

三、适时命名 学生定义

1.引入数轴概念

(设计说明:由直观认识到理性认识,引导学生建立数轴概念)

通过上面的问题,我们知道正数,0和负数可用一条直线上的点表示出来。

一般地,在数学中人们用画图的方式把数"直观化"。通常用一条直线上的点表示数,这条直线叫做数轴。

2、揭示数轴内涵

(设计说明:让学生在动手操作中探索数轴的三要素)

四、提炼总结 规范定义

问题4:表示数的直线(数轴)须具备什么条件,才能将不同的数用它上面的点清楚的表示出来呢?你能试着画出满足条件的数轴吗?

可以先让学生试着画出自己想象的数轴,并把学生不同的画法展示出来,让学生先讨论交流哪种画法最规范,然后师生共同分析归纳得出数轴的特征。(边总结边画图)

(1) 数轴是一条直线(习惯上将它画成水平,也可根据需要画成倾斜或竖直的)

(2) 数轴三要素

① 原点(可取直线上任一点作为原点,但一取定就不再改变。它表示数0,是正负数的分界点。)

② 正方向(通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向)

③ 单位长度(选取适当的长度为单位长度,直线上从原点向右,再隔一个单位长度取一个点,依次表示1,2,3……,原点向左,用类似方法依次表示-1,-2,-3……;单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

由此我们也可以说:规定了原点、正方向和单位长度的直线叫做数轴。

五、定义辨析 练习巩固

(设计说明:通过形式不同的练习,从不同的角度帮助学生进一步加深对数轴认识,

形成初步技能。)

1、下列图形哪些是数轴,哪些不是,为什么?

2、(1)画一条数轴,并表示出如下各点:±,±,±;

(2)画一条数轴,并表示出如下各点:1000,5000,-20__;

(3)在数轴上标出到原点的举例小于3的整数;

(4)在数轴上标出-5和+5之间的所有整数。

(教学说明:练习1是基础性训练,主要是进一步巩固如何在数轴上表示有理数,并能说出数轴上表示有理数的点所表示的数;练习2有所加深,在巩固基本知识的同时,还要关注到画数轴时要根据已知数适当地选择单位长度和原点的位置,这对初学者来说有一定的难度,因此,在学生独立尝试的基础上,还可以让学生进行交流,互相学习,教师也可以适时地进行点拨。)

六、反思总结 情意发展

(设计说明:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。) 问题1:什么是数轴?

问题2:如何画数轴?

问题3:如何在数轴上表示有理数?

(教学说明:以上设计再次通过对三个问题的思考引导学生回顾自己的学习过程,畅所欲言,加强反思、提炼及知识的归纳,纳入自己的知识结构)

七、布置作业

1、 课本18页习题第2题

2、指出下面数轴上A、B、C、D各点所表示的数

3、数轴上的点p与表示有理数3的点A的距离是2

(1)试确定点p表示的有理数;

(2)将点A向右移2个单位到点B,点B表示的有理数是多少?

(3)再把点B向左移动9个单位到点C,则点C表示的有理数是多少?

(教学说明:及时作业是巩固课堂学习知识的重要环节,由于课本提供练习较少,因此作适当的补充。同时也为下节课的学习作铺垫。)

设计说明:

数轴是数形转化、数形结合的重要媒介,也是学生难以理解的一个难点,对学生来说,将数和形结合在一起是非常抽象的,因此,教学过程从贴近学生的实际出发,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体现了从感性认识到理性认识到抽象概括地认识规律。

教学过程突出了情景—抽象---概括的主线,体现了从特殊到一般研究问题的方法,注意从学生已有的知识经验出发,充分发挥学生的主体意识,让学生主动参与到学习活动之中,并引导学生在课堂上感悟知识的生成、发展与变化,培养学生自主探索的精神。

相关推荐

热门文档

22 2196690