首页 > 学习资料 > 教育其它 >

《棱锥的概念和性质》说课稿(精编3篇)

网友发表时间 362600

【阅读指引】阿拉题库网友为您分享整理的“《棱锥的概念和性质》说课稿(精编3篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

《棱锥的概念和性质》说课稿1

作为高中的数学老师的你还在为撰写教学反思而坐不住吗?下面小编为您整理了1篇优秀的范文,希望对您有帮助。

各位评委,老师们:大家好!

今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节《棱锥》的第一课时:《棱锥的概念和性质》。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。

一、说教材

1、本节在教材中的地位和作用:

本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。

2. 教学目标确定:

(1)能力训练要求

①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。

②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。

(2)德育渗透目标

①培养学生善于通过观察分析实物形状到归纳其性质的能力。

②提高学生对事物的感性认识到理性认识的能力。

③培养学生“理论源于实践,用于实践”的观点。

3. 教学重点、难点确定:

重 点:1.棱锥的截面性质定理 2.正棱锥的性质。

难 点:培养学生善于比较,从比较中发现事物与事物的区别。

二、说教学方法和手段

1、教法:

“以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。

在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。

2、教学手段:

根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。

三、说学法:

这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。

四、 学程序:

[复习引入新课]

1.棱柱的性质:(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面是平行四边形

2.几个重要的四棱柱:平行六面体、直平行六面体、长方体、正方体

思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?

[讲授新课]

1、棱锥的基本概念

(1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念

(2).棱锥的表示方法、分类

2、棱锥的性质

(1). 截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

已知:如图(略),在棱锥S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并与SH交于H’。

证明:(略)

引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥

的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

(2).正棱锥的定义及基本性质:

正棱锥的定义:①底面是正多边形

②顶点在底面的射影是底面的中心

①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;

②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;

棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

引申: ①正棱锥的侧棱与底面所成的角都相等;

②正棱锥的侧面与底面所成的二面角相等;

(3)正棱锥的各元素间的关系

下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本 图9-74(略)正棱锥中的棱锥S-OBM从整个图中拿出来研究。

引申:

①观察图中三棱锥S-OBM的侧面三角形状有何特点?

(可证得∠SOM =∠SOB =∠SMB =∠OMB =900,所以侧面全是直角三角形。)

②若分别假设正棱锥的高SO= h,斜高SM= h’,底面边长的一半BM= a/2,底面正多边形外接圆半径OB=R,内切圆半径OM= r,侧棱SB=L,侧面与底面的二面角∠SMO= α ,侧棱与底面组成的角∠SBO= β, ∠BOM=1800/n (n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。

(课后思考题)

[例题分析]

例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是( )

A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥

(答案:D)

例2.如图已知正三棱锥S-ABC的高SO=h,斜高SM=L,求经过SO的中点且平行于底面的截面△A’B’C’的面积。

﹙解析及图略﹚

例3.已知正四棱锥的棱长和底面边长均为a,求:

(1)侧面与底面所成角α的余弦(2)相邻两个侧面所成角β的余弦

﹙解析及图略﹚

课堂练习]

1、 知一个正六棱锥的高为h,侧棱为L,求它的底面边长和斜高。

﹙解析及图略﹚

2、 锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。

﹙解析及图略﹚

[课堂小结]

一:棱锥的基本概念及表示、分类

二:棱锥的性质

1. 截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

2.正棱锥的定义及基本性质

正棱锥的定义:①底面是正多边形

②顶点在底面的射影是底面的中心

(1)各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高

相等,它们叫做正棱锥的斜高;

(2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

引申: ①正棱锥的侧棱与底面所成的角都相等;

②正棱锥的侧面与底面所成的二面角相等;

③正棱锥中各元素间的关系

[课后作业]

1:课本P52 习题 : 2、 4

2:课时训练:训练一

《棱锥的概念和性质》说课稿2

一、说教材

1、本节在教材中的地位和作用:

本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。

2. 教学目标确定:

(1)能力训练要求

①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。

②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。

(2)德育渗透目标

①培养学生善于通过观察分析实物形状到归纳其性质的能力。

②提高学生对事物的感性认识到理性认识的能力。

③培养学生“理论源于实践,用于实践”的观点。

3. 教学重点、难点确定:

重 点:1.棱锥的截面性质定理 2.正棱锥的性质。

难 点:培养学生善于比较,从比较中发现事物与事物的区别。

二、说教学方法和手段

1、教法:

“以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。

在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。

2、教学手段:

根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。

三、说学法:

这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。

四、 学程序:

[复习引入新课]

1.棱柱的性质:(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面是平行四边形

2.几个重要的四棱柱:平行六面体、直平行六面体、长方体、正方体

思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?

[讲授新课]

1、棱锥的基本概念

(1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念

(2).棱锥的表示方法、分类

2、棱锥的性质

(1). 截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

已知:如图(略),在棱锥s-ac中,sh是高,截面a’b’c’d’e’平行于底面,并与sh交于h’。

证明:(略)

引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥

的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

(2).正棱锥的定义及基本性质:

正棱锥的定义:①底面是正多边形

②顶点在底面的射影是底面的中心

①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;

②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;

棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

引申: ①正棱锥的侧棱与底面所成的角都相等;

②正棱锥的侧面与底面所成的二面角相等;

(3)正棱锥的各元素间的关系

下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本 图9-74(略)正棱锥中的棱锥s-obm从整个图中拿出来研究。

引申:

①观察图中三棱锥s-obm的侧面三角形状有何特点?

(可证得∠som =∠sob =∠smb =∠omb =900,所以侧面全是直角三角形。)

②若分别假设正棱锥的高so= h,斜高sm= h’,底面边长的一半bm= a/2,底面正多边形外接圆半径ob=r,内切圆半径om= r,侧棱sb=l,侧面与底面的二面角∠smo= α ,侧棱与底面组成的角∠sbo= β, ∠bom=1800/n (n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。

(课后思考题)

[例题分析]

例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是( )

a.三棱锥 b.四棱锥 c.五棱锥 d.六棱锥

(答案:d)

例2.如图已知正三棱锥s-abc的高so=h,斜高sm=l,求经过so的中点且平行于底面的截面△a’b’c’的面积。

﹙解析及图略﹚

例3.已知正四棱锥的棱长和底面边长均为a,求:

(1)侧面与底面所成角α的余弦(2)相邻两个侧面所成角β的余弦

﹙解析及图略﹚

课堂练习]

1、 知一个正六棱锥的高为h,侧棱为l,求它的底面边长和斜高。

﹙解析及图略﹚

2、 锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。

﹙解析及图略﹚

[课堂小结]

一:棱锥的基本概念及表示、分类

二:棱锥的性质

1. 截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

2.正棱锥的定义及基本性质

正棱锥的定义:①底面是正多边形

②顶点在底面的射影是底面的中心

(1)各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高

相等,它们叫做正棱锥的斜高;

(2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

引申: ①正棱锥的侧棱与底面所成的角都相等;

②正棱锥的侧面与底面所成的二面角相等;

③正棱锥中各元素间的关系

[课后作业]

1:课本p52 习题 : 2、 4

2:课时训练:训练一

《棱锥的概念和性质》说课稿3

各位老师:

大家好!我叫周,来自湖南科技大学。我说课的题目是《程序框图》,内容选自于新课程人教A版必修3第一章第一节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:

一、教材分析

1.教材所处的地位和作用

通过上节学习我们知道,算法就是解决问题的步骤,在我们利用计算机解决问题的时候,首先我们要设计计算机程序,在设计计算机程序时我们首先要画出程序运行的流程图,使整个程序的执行过程直观化,使抽象的问题十分清晰和具体。有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端,也是使用计算机处理问题前的一个必要的步骤。

2.教学的重点和难点

重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构

难点:能综合运用这些知识正确地画出程序框图。

二、教学目标分析

1.知识与技能:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。

2.过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。

3.情感态度与价值观:通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。

三、教学方法与手段分析

1.教学方法:采用“问题探究式”教学法,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力以及实际解决问题的能力。

2.教学手段:利用多媒体辅助教学,体现在计算机和图形计算器的使用,利用它们来演示程序的设计过程,让学生们能很清楚直观地看到整个经过,并激起他们学习程序设计的兴趣。

四、教学过程分析

1.复习回顾,导入新课(约5分钟)

回顾前面我们如何用自然语言来描述算法,然后向学生们提出问题:用自然语言描述算法有什么缺陷性?是不是不够直观清楚地让我们看到整个算法的程序和步骤?我们平时一般为了能让一个过程呈现得更加直观,我们一般会选择如何解决?解决方法就是作图。通过这几个问题,然后引出我们今天所要学习的内容,那就是为了能更形象直观地让我们看到算法的整个程序和步骤,我们选择用一种新的描述方式来描述算法——程序框图。

2.启发诱导,探索新知(约20分钟)

⑴认识基本图形符号:认识程序框图里出现的基本图形符号,并且能很好地掌握他们,是接下来学习程序框图的前提,所以在学习用程序框图来描述算法之前,我们必须先了解这些符号所代表的意义,那样才能让我们接下来的学习更加顺利。在学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则。

⑵应用符号描述算法:根据刚刚学习的图形符号知识,尝试用程序框图来描述在第一节里我们已经学习过的判定一个数是否为质数的算法的程序。这部分内容主要是在老师的引导下,启发学生一步一步根据所学知识画出程序框图。这样可以使学生们对前面知识的理解有着一定的促进作用,同时培养他们的逻辑思维能力以及动手能力,同时为程序框图的定义的得出打下基础。

⑶概括定义加深理解:根据刚刚的作图步骤,让学生们积极思考并回答,然后在老师的引导下归纳得出程序框图的定义。在得出定义之后,要引导学生注意定义里的关键字,然后通过举例进一步向学生们解释这些关键字,以达到更好的掌握效果。

⑷初步认识逻辑结构:根据刚刚所作的判定一个数是否为质数的算法的程序框图总结出程序框图的三种不同的逻辑结构,初步向学生们介绍在程序框图里存在的三种不同的基本逻辑结构。由于这部分知识是学生新接触到的内容,所以主要由老师引导学生一同找出图中存在的三种不同的逻辑结构,根据它们各自所呈现的不同特点总结出它们的特征,之后由老师说出它们的名称。这里对逻辑结构的初步认识,也是为后面对它们的深入探究打下基础。

3.结合例题,深入认识(约10分钟)

在这一环节我只为学生们准备了1道例题,由于一节课的时间有限,所以这里我只能就上面学习的三种基本逻辑结构里面的最简单的顺序结构,结合例题作更深层次的理解,剩下的两种逻辑结构将是我们下节课学习的主要内容。

例题选自课本的例3它针对的就是顺序结构,在题目里涉及到一个学生不熟悉的概念,那就是海伦公式,所以首先要让学生们了解那是什么,否则将无从解题。之后就引导学生分析算法,这个过程可以培养学生积极思考的能力。然后由学生们自己作出这道题的程序框图,锻炼学生的动手能力,加深理解。

4.课堂小结

⑴程序框图的基本概念

⑵程序框图的几种常用的图形符号(要明确它们的形状、作用及使用规则)

⑶程序框图的三种基本逻辑结构(要初步认识它们的基本特征)

5.布置作业

⑴已知x=4,y=2,画出计算w=3x+4y的值的程序框图。(这是一道要求作出具有顺序结构的程序框图题,很基础,一般的学生都能独立完成)

⑵由于这节课我们已经初步接触了另外两种逻辑结构,所以我要求学生们能在课后将书上的例4和例5好好思考一下,为下节课的学习做好准备。

[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

6.板书设计(略)

相关推荐

热门文档

23 362600