小学数学六年级《比例的应用》教案4篇
【路引】由阿拉题库网美丽的网友为您整理分享的“小学数学六年级《比例的应用》教案4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
小学数学六年级《比例的应用》教案【第一篇】
教学内容
苏教版九年义务教育六年制小学教材第十二册P35~38。
教学目标
(一)知识教学点
感受并理解比例尺的意义,会计算图上距离和实际距离,并能解决相关的实际问题。
(二)能力训练点
①培养学生发现问题、分析问题、解决问题能力;
②在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣;
③辩证唯物主义的初步渗透
教学重点
比例尺的应用。
教学难点
比例尺的实际意义。
教学过程
一、设置教学情境,感受比例尺
(一)画画比比
1、估计黑板的长和宽:教室前的这块黑板同学们熟悉吗?
请你估计一下黑板的长和宽。
2、丈量黑板的长和宽:(板书:黑板实际长米,宽米)
3、画黑板:你能照样子把黑板画在本子上吗?(师巡视)
4、质疑:这么大的黑板,为什么能画在这么小的一张纸上呢?(长和宽按一定的比例缩小了。)
5、挑两个黑板图(一个画得不像一个画得较像)出示:
a)评价:①谁画得更像一点?
②分析图A画得不像原因可能是什么?(长和宽缩小的比例不一样。)
b)师生合作,算一下长和宽分别缩小了多少倍?得数保留整数。(屏幕显示)
图上长7厘米,长缩小:350÷7=50图上长5厘米,长缩小:350÷5=70
宽厘米,宽缩小:150÷=100宽厘米,宽缩小:150÷=60
c)点拨:从上面计算结果来看图A长和宽缩小的比例差距较大(即比例失调),所以看上去画得不像;而图B长和宽缩小的比例接近,所以看上去画得较像。
(二)再画再比
1、想一想怎样画得更像?(长和宽缩小的比例要保持相同。)
2、课件展示准确的平面图:
3、请你帮老师算算长和宽分别缩小多少倍?
图上长厘米缩小:350÷=100宽厘米缩小:150÷=100
4、小结:当长和宽缩小的倍数相同时,黑板的平面图就十分逼真!由此可见,为了能反映真实的情况,画图时必须要有个统一的标准,这个统一的标准就是比例尺。(板书:比例尺)
二、结合实际,理解比例尺
(一)说一说
①讲授:课件中的长方形是按缩小100倍来画的,我们就说这幅图的比例尺是1﹕100。
②谁来说说比例尺1﹕100表示什么?(图上距离是实际距离的一百分之一;实际距离是图上距离的一百倍;图上距离1厘米表示实际距离100厘米等等)。
③图A、图B长和宽比例尺各是多少?分别表示什么?
小结:一幅图一般只有一个比例尺,当长和宽的比例尺不一样时,所画黑板就会失真。
④用自己话说说什么叫做比例尺?怎样计算比例尺?
小结:图上距离与实际距离的比叫做比例尺;比例尺通常写成前项是1的比。
(二)算一算
①下图是我校附近的平面图(屏幕同时显示),新华五村菜场距我校直线距离约300米,可在这幅图上只画了3厘米,这幅图的比例尺是多少?
评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?
②从1﹕10000这一比例尺上,你能获取那些信息?
板书:图上距离是实际距离的一万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等。
三、联系实际,应用比例尺
(一)求图上距离
1、还是在这幅图上,现在要标上区委,估计一下我校离区委直线距离有多远?(400米)你看在这幅图上要画多长?
①独立思考,试试看,如感觉有困难小组内小声讨论。
②评讲:你是怎么想的?还可以怎么算?你觉得要注意些什么?
方法一:400米=40000厘米方法二:400米=40000厘米
40000÷10000=4(厘米)40000×1/10000=4(厘米)
方法三:10000厘米=100米方法四:用比例解(略)等等
400÷100=4(厘米)
小结:求图上距离可以用乘法计算,也可以用除法计算,关键是理解的角度不一样。
③如何画?自己画画看。(按上北下南左西右东常规去画,注意方向。)
2、练一练:
区委东北是我区闹市区——十村,已知区委和十村实际距离是千米,在这图上应画多长?如何画?自己画画看。(课件演示)
3、画一画:
①请准确地画出教室前黑板的平面图。(怎样画才算准确?)
②评讲:你是如何画的?方法一:自己定一个比例尺算出图上长和宽然后画;方法二:在原有图上以长的比例尺为比例画出宽;方法三:在原有图上以宽的比例尺为比例画出长。
(二)求实际距离
1、西厂门在区委的东南面,(课件演示)量得图上距离是9厘米,如何算实际距离?有几种算法?
①独立思考;②合作交流;③讲评算理。(略)
2、练习:南钢宾馆在区委西南(课件演示)量得图上距离是18厘米,如何算实际距离?
(三)新课延伸
1、南京距大厂40千米,画在这幅图上要画多少厘米?
①独立列式计算(400厘米)。
②要画400厘米,你有何感觉?(太长画不下)
③画不下怎么办?(调整比例尺)
④说说你的调整方案?
2、请拿出标有南京上海的地图,找出比例尺并说说意义。
①同座位间合作算出实际距离。
②一辆汽车从南京早上9﹕00从南京出发赶往上海,要赶下午2﹕00的飞机,如果车速是每小时80千米,问能否赶及?为什么?
2、五一长假是旅游的黄金季节,请同学们采访一下听课的老师,最向往哪个大城市,然后根据地图帮老师算出实际距离,再告诉被采访的老师。
四、课堂总结,回顾比例尺(略)
比例尺的应用【第二篇】
教学内容:教科书第49页的例7,完成随后的“练一练”和练习十一的第3、5题。
教学目标:
1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。
2、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
教学重点、难点:能按给定的比例尺求相应的实际距离或图上距离;感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。
教学准备:教学光盘、了解家到学校的大概距离
教学过程
一、复习导入。
1、什么叫比例尺?求比例尺时要注意哪些问题?
2、在一幅地图上南京到上海相距5厘米,实际相距300千米,求这幅地图的比例尺?你能画出这幅地图的线段比例尺吗?
二、教学新课
1、教学例7。
(1)出示例7,明确题意,找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了图上距离,求实际距离。)
(2)说一说比例尺1:8000所表示的意义。
(3)根据对1:8000的理解让学生尝试练习。
(4)交流算法,说说为什么这样算?帮助学生掌握不同算法以及之间的联系。
重点引导学生理解和掌握用列比例式求实际距离的方法。引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?
注意:最后的单位要换算成“米”作单位的数。
2、做“试一试”。
(1)独立算出学校到医院的图上距离。
(2)讨论怎样把医院的位置在图上表示出来。
(3)在图中表示医院的位置。
三、巩固练习。
1、做“练一练”先独立解题,在组织交流
2、做练习十一第4题
重点知道学生在地图上测两地之间的距离和在地图上如何找比例尺。
3、 做练习十一第5题。重点帮助学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。
4、 将下列各题做在课堂作业本上。
(1)北京到天津的距离是140千米,在一幅比例尺是1:2000000的地图上,两地间的距离是多少厘米?
(2)在一幅比例尺是1:500000的地图上,量得甲、乙两城的距离是厘米。甲、乙两城实际相距多少千米? 0 40 80 120千米
(3)在一幅比例尺为 的地图上,小丽量得某省会城市与北京的距离是厘米。这个城市与北京相距多远?
(4)做练习十一第3题。
(5)学生阅读“你知道吗”,选择两个比例尺说说它们的实际意义。
四、全课小结。
通过本课的学习,你又掌握了什么新的本领?
五、课堂作业
完成补充习题的相关练习
板书设计:
比例尺的应用
5×8000=40000(厘米) 解:设明华小学到少年宫的实际距离是x厘米。
40000厘米=400米 5:x=1:8000
x=40000
40000厘米=400米
答:明华小学到少年宫的实际距离是400米。
《比例的应用》教学设计【第三篇】
一、 创设情境,导入新课:
同学们,我们近段时间学了些什么知识?那么就请同学们运用正比例、反比例的意义来判断(课件出示判断题)
1、判断下面每题中的两种量成什么比例关系?
(1)单价一定,总价和数量、
(2)每小时耕地的公顷数一定,耕地的总公顷数和时间、
(3)全校学生做操,每行站的人数和站的行数、
2、 说说速度、时间和路程这三个量存在怎样的比例关系?
(当速度一定)
二、探究新知:
1、 导入新课:刚才同学们说得很好,说明前面所学的知识掌握得不错,这节课学习怎样应用比例知识来解决生活中的实际问题。
板书课题:比例的应用
2、学习例1.(课件出示例题 )
例1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时、甲乙两地之间的公路长多少千米?
(1) 先读题,想想:这种题型我们以前学过没有,属于哪类应用题?该怎样解答?再让学生在草稿上独立解答,然后指名说说解答方法。
(2)引导学生探究用比例知识解答。
提问:这道题能不能用比例知识来解答呢?
(课件出示问题,让学生思考)
1、这道题中涉及哪三种量?(路程、时间和速度)
2、哪种量是一定的?你是怎样知道的?(照这样的速度就是说速度一定)
3、行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系)(指名说说思考过程)
(课件出示思考的过程,并齐读)
(3) 提问: 根据正比例的意义可以列出怎样的比例?
(教师根据学生的回答板书)
(4) 解这个比例。 (教师板书解答过程)
(5) 怎样检验所求的答案是否正确?(把求出的未知数代入原方程 ,看等式是否相等)
(6)写出答语。
(7) 练习:现在我们来看看,如果把例1的条件和问题改成下面的题,该怎样解答?(课件出示练习题)
一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?
(8)学生解答后,指名说说和例1的解法有什么相同?(题中两种量成正比例的关系没有变,解答的方法也没有变,只是所设的未知数为小时数)。
(9)教师说明:例1和练习题都是根据正比例的意义列出的比例式,也是方程。
3、学习例2:
(课件出示例题)
(1)自主探究用比例知识解答
1 合作交流,小组讨论:
题中有哪几种量? 这几种量之间有什么关系?根据比例的知识可以列出怎样的方程?
2、汇报讨论结果。
老师板书方程并提问: 这个方程是比例吗?为什么?
3、师生一起解答。(完成例2的板书)
4、练习:(课件出示练习题)
一辆汽车从甲地开往乙地,每小时行驶70千米,5小时到达。如果每小时行驶千米,需要多少小时到达?
(学生独立完成后,指名说说解答方法与例2的异同:题中两种量成反比例的关系没变,解答方法也没变,只是所设未知数为小时数。)
4、 比较例1和例2的异同:(相同的是都是用比例解答的,不同的是例1是根据正比例的意义列出的比例式,例2是根据反比例的意义列出的等式。但它们都是方程。) 你能从例1、例2的解答中找出用比例的方法解答应用题的关键是什么吗?
5、教师小结。
(课件出示)通过例1、例2的解答,让同学们归纳出:(用比例方法解答应用题的关键是:先正确地找出题中两种相关联的量,判断它们成什么比例关系,然后根据正、反比例的意义列出方程。)
三、知识应用:(出示课件做一做)
1、食堂买来三桶油用780元,照这样计算,买8桶油要用多少钱?
2、某种型号的钢滚球,3个重克。现有一些这种型号的滚球,共重945克,一共有多少个?
四、作业:
练习中的1~4题。
五、课堂小结:
1、这节课我们学会了什么?
(学会了用比例知识解答应用题)
2、结束语:比例知识在日常生活中的应用非常广泛,比如要测量一颗大树的高度,或是一根旗杆的高度,都可以用比例知识来解决。我们以后再去探讨好不好?
比例尺的应用【第四篇】
教学内容:教科书第49页的例7,完成随后的“练一练”和练习十一的第3、5题。
教学目标:
1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。
2、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
教学重点、难点:能按给定的比例尺求相应的实际距离或图上距离;感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。
教学准备:教学光盘、了解家到学校的大概距离
教学过程
一、复习导入。
1、什么叫比例尺?求比例尺时要注意哪些问题?
2、在一幅地图上南京到上海相距5厘米,实际相距300千米,求这幅地图的比例尺?你能画出这幅地图的线段比例尺吗?
二、教学新课
1、教学例7。
(1)出示例7,明确题意,找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了图上距离,求实际距离。)
(2)说一说比例尺1:8000所表示的意义。
(3)根据对1:8000的理解让学生尝试练习。
(4)交流算法,说说为什么这样算?帮助学生掌握不同算法以及之间的联系。
重点引导学生理解和掌握用列比例式求实际距离的方法。引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?
注意:最后的单位要换算成“米”作单位的数。
2、做“试一试”。
(1)独立算出学校到医院的图上距离。
(2)讨论怎样把医院的位置在图上表示出来。
(3)在图中表示医院的位置。
三、巩固练习。
1、做“练一练”先独立解题,在组织交流
2、做练习十一第4题
重点知道学生在地图上测两地之间的距离和在地图上如何找比例尺。
3、 做练习十一第5题。重点帮助学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。
4、 将下列各题做在课堂作业本上。
(1)北京到天津的距离是140千米,在一幅比例尺是1:2000000的地图上,两地间的距离是多少厘米?
(2)在一幅比例尺是1:500000的地图上,量得甲、乙两城的距离是厘米。甲、乙两城实际相距多少千米? 0 40 80 120千米
(3)在一幅比例尺为 的地图上,小丽量得某省会城市与北京的距离是厘米。这个城市与北京相距多远?
(4)做练习十一第3题。
(5)学生阅读“你知道吗”,选择两个比例尺说说它们的实际意义。
四、全课小结。
通过本课的学习,你又掌握了什么新的本领?
五、课堂作业
完成补充习题的相关练习
板书设计:
比例尺的应用
5×8000=40000(厘米) 解:设明华小学到少年宫的实际距离是x厘米。
40000厘米=400米 5:x=1:8000
x=40000
40000厘米=400米
答:明华小学到少年宫的实际距离是400米。
课前思考:
这节课是学生在掌握了比例尺的含义的基础上展开的,让学生根据比例尺的意义来求实际距离或者是图上距离。解决这类问题学生会有不同的方法,应该允许他们按照自己的思考方法进行解答。在引导学生进一步理解不同算法时,特别要引导学生理解和掌握用比例式求实际距离的方法,帮助学生把握不同算法之间的联系。
根据比例尺=图上距离:实际距离以及学生的不同解法,可以归纳如下:
图上距离=实际距离×比例尺
实际距离=图上距离÷比例尺
在计算的过程中关键还是要让学生注意单位的统一。在用解比例的方法求实际距离时,要和学生强调解设中单位还应该是厘米,因为图上距离的单位就是厘米,所以要统一。
课前思考:
对比例尺意义的理解是解答这类问题的关键,在理解比例尺时,一定要结合图形的放大与缩小,这样有助于学生对解题方法的掌握。
教材上介绍了3种解题思路,但我觉得前两种的思考方法是一样的。且第2种思路中“比例尺1:8000,也就是图上1厘米,表示实际距离80米”,这样的理解有跳跃性,我觉得还是让学生理解为“图上1厘米,表示实际距离8000厘米”,最后让学生看问题所求的单位名称与计算结果是否一致,如果不一样,需要统一单位,这样学生比较好理解。
用比例的方法来解答这类问题,可能学生对这样的解法和方程解有一样的感觉,怕麻烦!但作为一种新的解题思路,必须让学生掌握,所以今天的课堂教学中,我准备让学生这两种思路都掌握。在以后的练习中,如果题目没有要求解题方法,那么学生可以用自己喜欢的方式来解答。
沈老师提出对比例尺的变式,我觉得不要介绍的好,学生只要用比例尺意义来理解,要么体会到是放大与缩小,用倍数来解答,要么根据比例尺列比例式解答。因为在变式中是将比例尺看作一个数来理解了,但学生印象中的比例尺是一个比。这个思维的跳跃太大了!我在前几年六年级教学中使用过这种方法,效果不好!
课前思考:
潘老师设计的教案总体的教学思路是非常清晰的,我基本采用这一教学设计。由于刚放过三天假期,所以我想大部分学生对于放假前学习的“比例尺”这一部分知识应该遗忘得差不多了。那么在课始部分我们就可以借助复习题帮助学生复习比例尺的意义,以及两种不同的比例尺的意义。
教学例题7时,学生们一般都喜欢根据比例尺的意义用算术方法来求出实际距离。而用列比例式求实际距离的方法,学生不太容易想到。课上需要教师引导学生思考,这里要关注学习困难生的学习情况,当列出比例式后,可以再让学生说说比例式中的两个比分别是表示哪两个数量的倍比关系,为什么它们可以组成比例式等。
练习十一的第5题是让学生自己确定比例尺,课前需要学生了解自己家离学校大约有多少千米,还需要指导学生量一量教材上第5题的这个长方形的长、宽分别是多少,然后再确定比例尺。
练习十一的第4题也需学生自己去准备一张中国地图,可以让学生自己来编一道实际问题。由于学生所准备的中国地图的比例尺是不同的,图上测得的上海到北京的距离也是不同的,但通过计算学生会发现上海到北京的实际距离却是相同的。
课后反思:
上完这节课,感觉自己课前的准备工作做的不够充分,没有仔细阅读教材。虽然解决这类问题学生会有不同的方法,而且学生基本上都会用计算。但是这节课还是在于引导学生进一步理解和掌握用比例式求实际距离或图上距离的方法。从学生完成的作业质量来看,一开始很有必要让学生用比例式来求实际距离或者图上距离。因为尽管课上一再强调在解设的时候一定要注意单位,但是在练习中仍然有很多学生没有注意。在学生熟练了以后,接下来的练习就让学生选择自己喜欢的方法去完成。
其次,我本来认为根据比例尺的定义可以得出:图上距离=实际距离×比例尺 ;实际距离=图上距离÷比例尺这两个公式,正如高教导所说上完两节课后,感觉在实际解决问题的过程中根本不需要学生去记忆,学生自己理解了比例尺的含义之后,自然而然会解决。如果强行让学生去记忆,太匡死学生的思维了。
在练习的过程中有时候需要求长方行草坪的面积或者是操场的实际面积,但是题中却没有明确具体的单位,有的学生用平方厘米做单位,有的学生用平方米做单位,我和学生讨论后的想法是是因为没有明确要求,两种答案都可以,但是与实际生活联系起来,用平方米做单位更恰当些,不知道这样的处理是否恰当。
课后反思:
应该说现在的教材中关于比例尺的应用凸显了比例尺的含义的理解,当学生对比例尺的含义真正理解了,那么他们就会灵活运用比例尺的含义来解决相关的实际问题。课堂上在学习例题7时,两个班中的大部分学生都马上想到了根据比例尺1:8000,说明图上距离是实际距离的8000倍,那么从题中已知的明华小学到少年宫的图上距离是5厘米就可以指导实际距离是5厘米的8000倍,所以很多学生都用5乘8000来计算。这样的计算方法比较简便而且容易理解。如果老师不规定他们用比例来解的话,一般学生都不会去主动选择这种方法。课上,我也没有特别强调后一种方法,但在作业中我请学生用解比例的方法来解决其中一题。结果发现在设实际距离时出现单位名称不统一的情况,也就是说将两个单位名称不一致的数组成了比。这一问题要及时解决,还是要引导学生从比例尺的意义来分析错在什么地方。还有不少学生直接根据图上距离和实际距离的倍比关系来列算式计算,应该说这种方法是最简便的,但在书写格式方面可能存在一些问题,如150千米除以5厘米等于30千米,这样的表达值得探讨。不知这样书写的学生是否真的理解这一算式的实际意义是图上1厘米表示实际30千米。
沈薇老师谈到的操场的实际面积的单位名称,我想结合生活实际学生们能理解应该用平方米比较合适,只是在解答时往往由于懒于改写单位名称就出现了用平方厘米表示操场的实际面积,这样做不能算错,但显然不合适。
课后反思:
今天的课上得很郁闷,不知道是不是由于是假期后的第一节课,课堂气氛比较沉闷,有的环节出现了包办代替的现象,这是本节课的最大遗憾。
在今后的教学中,一定要真正让学生参与到教学中来,把属于学生的时间还给学生,让学生有充足的时间去思考、交流、合作,使学生由知识的被动接受为自主探究,从而获得知识。
课后反思:
在课堂教学时,加强了对比例尺的意义的理解。在例题教学中,正如我课前预计的那样,学生都是根据图上距离与实际距离的倍数关系来列式解答的,并且两种想法就是教材上介绍的方法,学生的第2种解法比教材上更完整(先单位换算,统一单位后再进行计算)。没有学生想到用比例解答。于是在我的引导下,马上有部分头脑灵活的学生首先认识到第3种方法。于是我接着就强调了比例解的书写格式与注意点,提出用比例解的必要性。在巩固练习中,我要求学生用两种方法解其中必须有一种是比例解,所以在解答时花费了很多时间,但我觉得这个时间花得值得。因为有了两种不同的解题思路的训练,学生对每种列式的依据比较清晰。
课后与同组老师谈论了孙老师提出的疑义,我认为是正确的,学生对比例尺的含义理解到位,这样的解法是最简便的。