首页 > 学习资料 > 教案大全 >

圆锥的体积【优秀4篇】

网友发表时间 321911

【路引】由阿拉题库网美丽的网友为您整理分享的“圆锥的体积【优秀4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

圆锥的体积教案【第一篇】

教学目标:

1、在理解圆锥体积公式的基础上,能运用公式解决有关实际问题,加深对知识的理解。

2、培养学生观察、实践能力。

3、使学生在解决实际问题中感受数学与生活的密切联系。

教学重、难点:

结合实际问题运用所学的知识

教学理念:

1、数学源于生活,高于生活。

2、学生动手实践,自主学习与合作交流相结合

教学设计:

一回顾旧知:

1、圆锥的体积公式是什么?S、h各表示什么?

2、求圆锥的体积需要知道什么条件?

3、还知道哪些条件也能计算出圆锥的体积?怎样计算?

投影出示:

(1)S=10,h=6V=?

(2)r=3,h=10V=?

(3)V=,h=3S=?

二运用知识,解决实际问题

1、(投影出示例2:一堆小麦图)师:有这样一堆小麦,你知道它的体积是多少吗?怎么办呢?

2、这些数据都是可以测量的。现在给你数据:高为米,底面直径为4米

(1)麦堆的底面积:

(2)麦堆的体积:

3、知道了体积,这堆小麦大约有多少重能知道吗?(每立方米小麦约735千克)(得数保留整千克数)

4、一个圆锥形沙堆,占地面积为平方米,高米。

(1)沙堆的体积是多少平方米?

(2)如果每立方米沙约重吨,这些沙子共重多少吨?(结果保留一位小数)

5、用一根底面直径2分米,高10分米的圆柱体木料,削成一个的圆锥,要削去多少立方分米的木料?

(1)(出示图)什么情况下削出的圆锥是的?为什么?

(2)削去的木料占原来木料的几分之几?

(3)如果这是一块长4分米,宽2分米,高1分米的长方体木料,又在什么情况下削出的圆锥是的呢?

三综合练习

1、一个圆柱的底面积为81平方厘米,高12厘米,和它等体积等底的圆锥高为()厘米;和它等体积等高的圆锥的底面积为()厘米。

2、将一个体积为16立方分米的圆锥形容器盛满水,倒入一个底面积为10平方分米的圆柱体容器中,水面的高度是()分米

3、一个圆柱和一个圆锥的体积相等,如果圆柱的高是圆锥的4/5,那么圆柱的底面积是圆锥的几分之几?

圆锥的体积【第二篇】

第1课时

主备人:高向红

教学内容:圆锥的体积

教学目标:

1、 通过操作、观察、归纳圆锥体积的计算方法,能根据不同的条件求圆锥的体积。

2、 解决实际生活中的一些问题。

3、 培养学生初步的空间观念和发展学生的思维能力。

教学重点

理解圆锥体积计算公式。

教学难点

操作、观察、归纳出圆锥体积计算公式,理解为什么要乘1/3?

对策:

通过操作、演示、推理得出计算公式。

课前准备:教具准备:自制圆锥、圆柱,教学光盘

教学预设:

一、 复习引新:

1、说出下面图形的名称,并计算它们的底面积。

(图略)图意:图1:圆柱:底面直径为6厘米,高是5厘米

图2:圆锥:底面直径为6厘米,高是5厘米

2、观察比较这两个图形有什么相同的地方?

3、请计算上面圆柱的体积,说出计算方法。

4、 估计一下,这个圆锥的体积是圆柱的几分之几?

二、 探索圆锥的体积计算公式

1、 有什么办法得出结论?引导学生想到用操作的方法来验证。

2、 你们准备怎样来操作?

3、 教师实验操作,学生观察思考:在空圆锥中装水,然后倒入圆柱,看看倒了几次正好倒满?

4、 交流:从中你发现了什么?板书圆锥体积计算公式,圆锥的体积=圆柱体积×1/3

5、 是不是所有的圆柱和圆锥都有这样的关系?教师出示不等底登高的圆柱和圆锥,从而使学生体会到:只有等底等高的圆锥体积才是圆柱体积的1/3。(补充完整圆锥体积计算公式,圆锥体积=等底等高的圆柱体积×1/3

6、 启发学生用字母表达式来表达。

7、阅读第36页上的“你知道吗?”

三、 运用

1、 试一试:学生先独立思考,进行计算,再组织交流

2、 第31页上的第5题:先判断下面的圆锥与哪个圆柱的体积相等?你是怎样判断的?

3、 第31页上的第4题:让学生明确圆锥的体积与圆柱体积的关系。

4、 第30页上第1题

5、 第30页上第2题:学生先独立完成,再交流自己的想法,说出每步的意思。

6、 第31页上的第2题:学生体会到圆柱与圆锥等底等高,所以圆柱中的水深:12×1/3=4厘米

四、 全课总结

五、 独立作业:第31页上第1、3题

课前思考:

本课时的教学目标:

1.通过转化的思想,在实验的基础上使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积。

2.培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。

3.渗透事物间相互联系的辩证唯物主义观点的启蒙教育。

教学重点:通过转化的思想理解和掌握圆锥体积的计算公式。

教学难点:理解圆柱和圆锥等底等高时体积间的倍数关系。

教学设想:

首先联系已有的公式的推导,进一步强化学生的转化思想;然后通过在不同的圆柱体和圆锥体的选择培养学生的合理的判断和推理能力;三是通过实验,培养学生的观察、操作能力和初步的空间观念,为以后的几何知识的学习奠定良好的学习方法。

教学过程:

一、铺垫孕伏

1、提问:

(1)圆柱的体积公式是什么?我们是如何推导的?

圆柱------(转化)------长方体

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。

2.今天我们要学习圆锥体的体积,同学们觉得用什么方法比较好?

3.同学们觉得把圆锥体转化成什么比较好呢?

圆锥------(转化)------圆柱

学生回忆所学的数学知识中有哪些地方用到了转化的思想。

4导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)

二、正确选择、训练直觉思维。

1、教师拿出许多大小不等的圆柱体和圆锥体容器展示给学生。提问:

(1)同学们打算如何转化圆柱体和圆锥体之间的关系?

(2)如果让你在这么多的圆柱体和圆锥体中选择两个来探究,你打算选择什么样的圆柱体和圆锥体,说说你选择的理由。

2、在学生讨论的基础上教师强调用等底等高的圆柱体和圆锥体进行讨论。

三、大胆猜想、培养想象能力。

在确定用等底等高的圆柱体和圆锥体进行讨论的基础上教师让学生猜想:等第等高的圆柱体和圆锥体的体积之间到底有什么关系呢?

同学之间互相交流并说明想法。

四、动手实验,得出结论。

为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。

(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)

(学生得出:底面积相等,高也相等。)

底面积相等,高也相等,用数学语言说就叫"等底等高"。

(板书:等底   等高)

(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用"底面积×高"来求圆锥体体积行不行?(不行,因为圆锥体的体积小)

教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

拿出课前准备的水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

(3)学生分组做实验。

a. 谁来汇报一下,你们组是怎样做实验的?

b.你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

(学生发言:圆柱体的体积是圆锥体体积的3倍)

同学们得出这个结论非常重要,其他组也是这样的吗?

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的1/3   。

(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了沙子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

为什么你们做实验的圆锥体里装满了沙子往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

(在等底等高的情况下。)

(老师在体积公式与"等底等高"四个字上连线。)

现在我们得到的这个结论就更完整了。(指名叙述公式。)

今后我们求圆锥体体积就用这种方法来计算。

思考:要求圆锥的体积,必须知道哪两个条件?

(5)单项练习

圆锥的底面积是5平方分米,高是3分米,体积是(  ).

圆锥的底面半径是10厘米,高是9厘米,体积是(  ).

课前思考:

看了孙老师的课前思考之后,颇有感触。这节课我也想让学生分小组动手操作,在自己的操作过程中让学生得出圆锥的体积是与它等底等高的圆柱体积的1/3。关键是要课前的准备工作一定要做好,如果让学生去准备,按照前几次的情况来看,很多学生是不准备的。所以我打算课前组织一部分学生去学校沙堆取沙子,这样才能便于课上顺利进行实验。

教学中必须强调不是任何一个圆锥体的体积都是任何一个圆柱体体积的1/3。必须要在等底等高的情况下,这个结论才成立。计算圆锥体积的时候,要提醒学生不能忘记乘1/3。

课前思考:

教学的重点是推导圆锥体积的计算方法,这一内容的教学已经有许多的方法了,但是选择什么样的方法更适合课堂教学与学生的研究学习呢?总觉得最好的方法是让学生准备多个不同的圆锥体和圆柱体,其中也有等底等高,让学生自己合作研究摸索,从中发现之间的关系。但是这一方法最大的困难就是准备学具很困难,特别是不同的圆锥很难准备,因而打算采用半扶半放的方式组织教学,让学生明确在等底等高的情况下圆锥的体积是圆柱体体积的1/3。

课后反思:

本节课临时让学生用水代替沙子分小组操作,有个别学生已经自己在家里做过实验,由于用的是水,所以个别小组有一些误差。学生基本上都能概括出圆锥的体积是与它等底等高的圆柱体积的1/3。教师可以通过画图演示如果不满足“等底等高”这个条件,那这个结论是不成立的。

在推导出圆锥的体积是与它等底等高的圆柱体积的1/3时,还应该让学生继续去发现,圆柱的体积比它等底等高的圆锥的体积多2/3。

从作业的情况来看,大部分学生都掌握得不错,有个别学生还是忘记乘1/3。

课后反思:

在上这一课之前,我一直在思考该如何有效地组织学生开展本课时的探究活动。本次探究活动要体现两个要点,一是让学生理解“等底等高”这一研究的前提,二是让学生通过动手操作得出等底等高的圆柱与圆锥体积之间的关系。由于课前准备工作较充分,如:我让学生回家带了一些食用盐或食用糖来,并准备了学具盒中的等底等高的一个圆柱和圆锥。实验之前先让学生就圆柱与圆锥的体积关系进行大胆猜测,然后再让学生思考和讨论如何开展实验验证自己的猜测,最后再让学生四人一组进行实验以及汇报实验结果。另外,我还及时指导学生实验过程中需要注意的一些细节,如先将学具圆柱和圆锥测量一下,看看是否等底等高,每次装食用盐时要装满,这样就尽量减少误差。结果还不错,很多组学生得出了正确的结论,而且印象深刻。在随后的有关圆锥体积的计算中,我又针对如何进行简便计算进行了指导,不过对于大部分学生来说,可能还达不到这一层次。

课后反思:

这节课的教学,一是在教学新课时,综合了两位老师的设计,没有直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;二是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

课后反思:

今天在看四年前教六年级时这课的教学设计与课后反思,当时这节课是在自然教室上的(因为自然教室有很多自来水龙头),每个学生都做实验的机会。今天的课堂教学尽管学生猜测,我做了实验,但远没有学生自己动手操作印象深刻。看来,自己的课前准备还是不够充分。

在今天的教学中,由于提醒学生计算中不要漏乘1/3,还让学生想一些不忘乘的方法(在题目上圈出圆锥字样,看到圆锥题目先写好乘1/3等方法),并且在课堂上教了一些简便计算的技巧,学生的正确率明显提提高。

圆锥的体积【第三篇】

教学内容:第25~26页,例2、例3及练习四的第3~8题。

教学目的:

1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

教学重点:掌握圆锥体积的计算公式。

教学难点:正确探索出圆锥体积和圆柱体积之间的关系。

教学过程:

一、复习

1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

2、圆柱体积的计算公式是什么?

指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

二、新课

1、教学圆锥体积的计算公式。

(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )

板书:圆锥的体积= ×圆柱的体积= ×底面积×高,字母公式:v= sh

2、教学练习四第3题

(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

3、巩固练习:完成练习四第4题。

4、教学例3.

(1)出示例3

已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上。做完后集体订正。(注意学生最后得数的取舍方法是否正确)

四、巩固练习

1、做练习四的第7题。

学生先独立判断这三句话是否正确,然后全般核对评讲。

2、做练习四的第8题。

(1)引导学生学生思考回答以下问题:

① 这道题已知什么?求什么?

② 求圆锥的体积必须知道什么?

③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?

(2)让学生做在练习本上,教师巡视,做完后集体订正。

3、做练习四的第6题。

(1)指名学生先后回答下面问题:

① 圆柱的侧面积等于多少?

② 圆柱的表面积的含义是什么?怎样计算?

③ 圆柱体积的计算公式是什么?

④ 圆锥的体积公式是什么?

(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

五、总结

这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

板书:

圆柱的体积=底面积×高

圆锥的体积= ×圆柱的体积= ×底面积×高

字母公式:v= sh

圆锥的体积教案【第四篇】

教学目标:

1、通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。

2、能运用公式解答有关的实际问题。

3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。

教学过程

一、创设情境,引发猜想

1、电脑呈现出动画情境(伴图配音)。

夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去动物超市购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

2、引导学生围绕问题展开讨论。

问题一:狐狸贪婪地问:小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)

过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。

二、自主探索,操作实验

下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。

出示思考题:

(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

(2)你们的小组是怎样进行实验的?

1、小组实验。

(1)学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。

(2)同组的学生做完实验后,进行交流,并把实验结果写在长条黑板上。

2、大组交流。

(1)组织收集信息。

学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在插式黑板上:

①圆柱的体积正好是圆锥体积的3倍。

②圆柱的体积不是圆锥体积的3倍。

③圆柱的体积正好是圆锥体积的8倍。

④圆柱的体积正好是圆锥体积的5倍。

⑤圆柱的体积是等底等高的圆锥体积的3倍。

⑥圆锥的体积是等底等高的圆柱体积的1/3。

(2)引导整理信息。

指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)

(3)参与处理信息。

围绕3倍关系的情况讨论:

①请这几个小组同学说出他们是怎样通过实验得出这一结论的?

②哪个小组得出的结论更加科学合理一些?

圆锥的体积是等底等高的圆柱体积的1/3。

(突出等底等高,并请他们拿出实验用的器材,自己比划、验证这个结论。)

③引导学生自主修正另外两个结论。

3、诱导反思。

(1)为什么有两个小组实验的结果不是3倍关系呢?

(2)把一个空心的圆锥慢慢按入等底等高且装满水的圆柱形容器里,剩下水的体积是多少?这时和圆柱体积有什么关系?

4、推导公式。

尝试运用信息推导圆锥的体积计算公式。

(1)这里Sh表示什么?为什么要乘1/3?

(2)要求圆锥体积需要知道哪两个条件?

5、问题解决。

童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高)之后播放狐狸拿着圆锥形雪糕离去的画面。

三、运用公式,解决问题

1、教学例1。一个圆锥形的零件,底面积是19平万厘米,高是12厘米。这个零件的体积是多少?

2、学生尝试行算,指名板演,集体订正。

3、引导小结:不要漏乘1/3;计算时,能约分时要先约分。

四、巩固练习,拓展深化(略)

五、质疑问难,总结升华

通过这节课的学习,你们探索到了什么?怎样推导出圆锥体积公式的?

回到童话情节。我们发现三个圆锥形的雪糕换一个与它等底等高的圆柱形雪糕公平合理,如果狐狸只用一个圆锥形的雪糕和小白兔交换,而不使小白兔吃亏,那么圆锥形的雪糕应该是什么样的?配合用课件演示。

相关推荐

热门文档

20 321911