首页 > 学习资料 > 教学设计 >

圆锥的体积教学设计 《圆锥的体积》教学设计5篇

网友发表时间 2547828

【导言】此例“圆锥的体积教学设计 《圆锥的体积》教学设计5篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

《圆锥的体积》教学设计【第一篇】

基本信息

课题圆锥的体积

教材分析

《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。

学情分析

六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。

教学目标

1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。

3、体会数学与生活的密切联系,感受探究成功的快乐。

教学重点和难点

重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。

难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。

教学过程

教学环节

教师活动 预设学生行为 设计意图

一、复习准备

1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?

2、圆锥有什么特点?(同时出示幻灯)

3、在这个圆锥体中,几号线段是圆锥体的高。

4、引入:看来,同学们对于圆锥体的特征掌握得很好。你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。

2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。

3.学生手势出示

4.想

复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。

二、创设情境

出示等底等高的实心圆锥、实心圆柱和装有适量水的水槽(标有刻度)

引入新课(板书课题)激发学生兴趣,学生认真观察,跃跃欲试,都想争取参加实验。 联系生活实际创设情境,引发学生的好奇心,激发学习兴趣。情境创设可以让学生感受到数学与生活实际密不可分,从而感受用数学能够解决实际问题的思想,激发学生学习数学的兴趣。

三、学习新课

1、猜想体积大小

实心圆锥和实心圆柱的体积有怎样的关系圆锥体积小于圆柱体积。

圆锥体积可能是圆柱体积的二分之一、三分之一。猜想关系,这个环节,共进行两次猜想,第一次是猜想体积大小。第二次是让学生凭借直觉大胆提出猜想,猜想圆锥的体积与圆柱体积的可能关系,同时在猜想中明确探索方向。学生可能猜想二分之一、三分之一等。在形成猜想后,再引导学生“实验验证”自己的猜想。

2、理解等底等高

我们研准备一个圆柱体和一个圆锥体。你们比比看,这两个形体有什么相同的地方?

底面积相等,高也相等,用数学语言说就叫“等底等高”。底面积相等,高也相等。为推导圆锥的体积计算公式打下基础

3、猜想关系、实验验证

同学们有说二分之一的,有说三分之一的,争是争不出结果的,得用实验来验证。

谁来汇报一下,你们组是怎样做实验的?

你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?分组做实验。

学生汇报

用等底等高的圆锥和圆柱,通过实验,让学生研究出等底等高的圆柱与圆锥之间的关系。再利用课件演示,帮助学生回顾自己的实验过程,加深学生对实验过程的体验。

4、总结公式

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

V锥=V柱×1/3=sh×1/3

“sh”表示什么?乘1/3呢?学生尝试总结圆锥的体积计算公式。通过实验总结结论,培养学生的归纳概括能力和语言表达能力。

5、全面验证

是不是任何一个圆锥体的体积都是任何一个圆柱体体积的`1/3呢?

(课件演示)等底不等高、等高不等底

为什么你们做实验的圆锥体积等于圆柱体积的1/3呢?

现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

今后我们求圆锥体体积就用这种方法来计算。(因为是等底等高的圆柱体和圆锥体。)

在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。注重强调了等底等高圆锥和圆柱的体积才有这样的倍数关系,突出了重点。

6、圆锥体积公式的实际应用

(1)例:一个圆锥形的物体,底面积是11平方厘米,高是9厘米.它的体积是多少立方厘米?

(2)一个圆锥的底面直径是20厘米,高是6厘米,它的体积是多少?(只列式不计算)

(3)一个圆柱与一个圆锥体积相等,底面积也相等。圆柱高15厘米,圆锥高多少厘米?

(4)一个圆柱与一个圆锥体积相等,高也相等。圆锥的底面积是圆柱底面积的几倍?

《圆锥的体积》教案【第二篇】

一,说教材:

1,本课教学内容是义务教育课程标准实验教材小学数学六年级下册的第二单元《圆柱与圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例2,例3,相应的"做一做"及练习四的习题。

2,本课是在学生已经掌握了圆柱体积计算和认识了圆锥的基本特征的基础上学习的,是小学阶段几何知识的最后一课。学好这一部分内容,有利于进一步发展学生的空间观念,进一步解决一些实际问题打下基础。教材按照实验,观察,推导,归纳,实际应用的程序进行安排。

3,教学重点:能正确运用圆锥体积计算公式求圆锥的体积。

教学难点:理解圆锥体积公式的推导过程。

4,教学目标:

知识目标:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

能力目标:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;

情感与价值观:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

5,教具准备:等底等高的圆柱,圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。

学具准备:让学生分组制作等底等高的圆柱,圆锥若干对,一定量的细沙。

二,说教法:

1,实验操作法。

波利亚说过:"学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律,性质和联系。"因此,我在课上设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现"圆锥的体积等于和它等底等高的圆柱体积的三分之一".利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力,思维能力和动手操作能力。

2,比较法,讨论法,发现法三法优化组合。

几何知识具有逻辑性,严密性,系统性的特点。因此在做实验时,我要求学生运用比较法,讨论法,发现法得出结论:"圆锥的体积等于与它等底等高圆柱体积的三分之一".然后再让学生讨论假如这句话中去掉"等底等高"这几个字还能否成立,并让学生用不等底等高的空圆锥,空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了"等底等高"这个重要的前提条件。

三,说学法

我在研究教法的同时,更重视对学生学法的指导。

1,实验操作法。

2,尝试练习法。

圆锥的体积教学设计一等奖【第三篇】

1、面向学生:小学

2、学科:数学 人教 六年级 下学期

3、课时:1

本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。

学习本课需要达成以下的目标:

1、理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。

2、经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。

3、培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。

本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。

教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。

本课重点在于圆锥体积公式的推导。鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。

从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。

学生是九山小学,属农村的学生。

美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。”通过前几节课的学习,学生已经对圆柱、圆锥的基本特征和各部分的名称有了清楚的认识,知道了圆柱体积的计算方法,并能运用圆柱体积的计算公式解决具体问题,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。推导圆锥的体积时,学生分组操作,借助倒沙子的实验,亲身感受到等底等高的圆柱与圆锥之间的3倍关系。但是他们不易发现圆柱与圆锥体积之间不具备3倍关系的前提,可借助体积关系不是3倍的实验器材,引导学生经历由表及里,层层逼近的过程,进行深度的信息加工。

教学重点:掌握圆锥体积的计算公式。

教学难点:圆锥体积公式的推导过程。

教具、学具:准备若干同样的圆柱形容器,若干与圆柱等底等高和不等底不等高的圆锥形容器,沙子,课件。

启发式、自主、合作、探究式。

本课流程如下:

1、教师演示,激发学生的求知欲。

2、探究新问题。

3、通过实验,解决新问题,寻求真理。

4、归纳总结圆锥的体积公式。

5、运用公式解决问题,培养实践能力。

学生课前准备:

课前,让学生通过百度搜索圆锥的有关知识。

课前展示,汇报。

提问:上节课我们学习了圆柱的体积,怎样计算圆柱的体积呢?

2、揭示课题

这节课我们学习圆锥的体积。(板书:圆锥的体积)。猜测一下,圆锥的体积 与我们已学过的那个物体的体积有关系呢?圆锥的体积与圆柱的体积之间是怎样的关系呢?这节课我们我们就用圆柱与圆锥体积之间的关系,推导出圆锥的体积公式。

推导圆锥体积的计算公式(例2)

1、教师演示,激发学生的求知欲

(1)出示铅锤,向学生说明:这是一个铅锤,近似于圆锥的形状,铅锤所占空间的大小就是铅锤的体积。

幻灯片出示铅锤

提出问题:怎样求出铅锤的体积?

学生回答后说明:刚才我们所说的办法是前面我们所学的求不规则物体体积的方法。

(2)教师演示:用一大一小两个透明圆柱容器,大圆柱

是空的,小圆柱容器里装有适量的细沙,将小圆柱里细沙慢慢倒入大圆柱中,形成一个底面相等的沙堆,让学生思考:怎样求出这个圆锥的体积。学生回答后问:上述两种方法你有什么评价?

2、探究新问题

出示圆锥形的小麦堆,问:你能用上面两种方法求出它的体积吗?使学生明确上述方法不适用于解决此类问题,有局限性。要发现一种解决此类问题的普遍方法。

3、通过实验,解决问题

首先让学生明确实验目的:用过实验得到圆锥的体积公式。让学生拿出准备好的实验材料:圆柱、圆锥、细沙。

出示实验记录单,使学生明确记录单的内容,然后按记录单的要求开始实验,并填写记录单。

实验一:感知圆锥体与圆柱体的内在联系,推导圆锥的体积公式。

等底等高的圆柱圆锥各一个,若干细沙。把空圆锥里装满细沙,倒入空圆柱里,注意观察倒的次数。(倒三次正好倒满)

学生发现:只要圆柱与圆锥等底等高,结论是一样的,那就是倒三次正好把圆柱容器倒满。

实验二:进一步实践,加深印象,拓展知识

用“等底不等高”“等高不等底”“不等底不等高”的两个圆柱、圆锥进行实验,学生发现:不能得到上述结论。

3、学生实验后填写实验报告,归纳总结圆锥的体积公式。

为了加深学生理解,用视频展示用等底等高的圆柱和圆锥实验的过程。

统一结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一

sh 用字母表示:v= 1 / 3sh

4、 26页例3

出示例3图片

让学生审题,明确要求沙堆体积,知道底面直径和高,不能直接套公式,要先求出底面积,再用公式计算。为了便于学生理解,课件出示例3及解题过程。

1、填空题。

(1)立方米。

(2)一个圆锥的体积是立方厘米,与它等底等高的圆柱的体积是()立方厘米。

学生独立思考后指名回答。

2、现在我们可以根据圆锥的体积公式计算出铅锤的体积了。需要知道什么条件呢?

出示:

(1)底面积:平方厘米 高:3厘米

(2)底面半径:2厘米 高:3厘米

(3)底面直径:4厘米 高:3厘米

让学生从三个条件中任选一个进行计算。指一生板演,结合板演订正。订正时告诉学生:计算时结合数据的特点,可以用乘法交换律和结合律进行计算,使计算简便。

3、出示:在打谷场上,有一个近似于圆锥形的。测得它的底面直径:20米,高12米。已知每立方米小麦重735千克。这堆小麦的重量是多少?

启发学生想:要求麦堆的重量,必须先求什么?如何求出圆锥形麦堆的体积?求出麦堆的体积后,怎样求它的重量?

4、 判断下面的说法是不是正确。

(1)圆锥的体积等于圆柱体积的三分之一。

(2)圆柱的体积大于与它等底等高的圆锥的体积。

(3)圆锥的高是圆柱的高的3倍,它们的体积一定相等。

指名学生回答。第(3)题使学生明确:不知道圆柱与圆锥的关系时,不能判断它们的体积。

同学们,这节课我们学习了圆锥体积的计算,说一说你有什么收获。现在你能计算圆锥的体积吗?

圆锥的体积

圆锥的体积=

等底等高v =1/3sh

= 1/3 ×底面积×高

教学的成效如何,取决于教师对教学内容的把握和对学生学习情况的了解程度,求“圆锥的体积”是建立在已学“圆柱体积”的基础上进行教学的,本节课就是让学生利用等底等高的圆柱与圆锥体积之间的关系,根据已学的圆柱体积推导圆锥体积,通过这种方法沟通新旧知识之间的联系,来解决实际问题。

针对这样的学情,要推导出圆锥的体积,关键就在于教师能否采取有效的措施,沟通学生已有的知识结构。在具体实施教学的过程中,正是以这样的起点作支撑,以直观操作入手,让学生在动手操作中发现问题,解决问题,不仅便于学生接受和理解,还达到了较为理想的效果。

因此,只有认真分析教材,找准教学的起点,才能准确定位教学目标,合理安排教学时间,使教学活动紧凑严密,发挥出课堂教学的最大效益。

通过对教材的解读和对学生的关注,将知识进行重组和整合,根据已有的教学条件,选取更合适的内容对教材进行二度加工,从而充分有效地将教材的知识激活,提高课堂教学的实效性。在探究圆锥的体积公式时,让学生利用准备的学具进行试验操作,达到了教学目标。

精彩的课堂效果往往是在不断变化的教学方法中逐步呈现出来的。每个环节的设计并非一成不变,而是要在对已学知识进行巩固的基础上有所提升,有所转变。学生在解决问题时,也不是简单的应用已知的信息,而是对原有相关的数学信息进行加工,重新组织,找出对当前问题适用的对策。因此,在解决问题的过程中,采用猜测、实验验证等不同的策略开展教学,让学生感受到数学学习充满趣味性的同时也具备一定的挑战性,问题一旦解决了,学生的思维能力随之也发生了变化。

《圆锥的体积》教学设计【第四篇】

一。教学内容:人教版六(下)数学课本25~26页例2、例3。

二。学情分析:《圆锥的体积》是学生在学习了平面图形以及长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。包括圆锥体积计算公式的推导,圆锥体积计算公式的理解及具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识的掌握水平,为学习初中几何打下基础,同时还可以提高学生运用所学的数学知识和方法解决一些简单实际问题的能力。   三。教学目标1、整体教学目标(1)通过实验,学生自主探索出圆锥体积和圆柱体积之间的关系,得出圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。(2)  借助已有的生活和学习经验,渗透转化思想,在小组活动过程中,培养学生的动手操作能力和自主探索能力。 (3) 通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。2、分层教学目标下限目标:能初步感知圆锥体积公式的推导过程,运用公式计算圆锥的体积。上限目标:带领组内成员推导圆锥体积公式,并能运用圆锥体积公式灵活解决一些实际问题。   四。教学重点:掌握圆锥体积的计算公式。      教学难点:正确探索出圆锥体积和圆柱体积之间的关系。   五。教学准备:准备若干同样的圆柱形容器,若干与圆柱等底等高和不等底不等高的圆锥形容器,沙子和水,多媒体课件。座位安排:组间同质,组内异质。1号是组长、2号是副组长、3号是一般的组员、4号为学习能力相对弱的学生。1号和4号同桌。   六。教学方法1、教法:我在设计教法时,根据小班化特点、本节课的特点,结合小学生的认知规律,采用以下几种教法:(1)实验操作法。我在学生已经认识圆锥的基础上,设计了一个实验,利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。(2)比较法、讨论法、发现法三法优化组合。实验时,要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。2、学法:新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,( 1)实验转化法。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。(2)尝试练习法。本节课在教学例题3时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。   七。教学流程

教学过程设计意图   一。创设情境,导入新课    1.故事情境,渗透思想    上课伊始,师:你知道《曹冲称象》的故事吗?(多媒体屏幕显示画面)2.出示铅锤,引出课题师:你有办法知道这个铅锤的体积吗? 学生讨论、交流。 预设学生可能会想到用“排水法”。 如果要测量建筑物上圆锥形尖顶的体积,还能用这种方法吗? 最简便的方法就是知道圆锥的体积计算公式。---   揭题板书:圆锥的体积3.独立思考,大胆猜想。猜一猜,圆锥的体积和什么有关? 根据学生的各种猜想,教师进一步引导学生思考,我们学过哪些图形的体积计算?圆锥的体积与哪种图形的体积有关?4.观察比较,反馈交流师举起圆柱、圆锥教具,把圆锥体套在透明的圆柱体里,让学生想一想它们的体二。自主探究,合作交流积之间会有什么样的关系。(生猜测,圆柱的体积可能是圆锥的2倍、3倍、4倍或其他)1.进行实验、收集数据。 师:圆锥的体积究竟和圆柱体积有什么关系?请同学们亲自验证。 这里有沙子和水,还有等底等高和不等底不等高的各种圆柱、圆锥的模具。实验要求:各组根据需要选用实验用具,小组成员分工合作,轮流操作,作好实验数据的收集整理。   1号圆锥 2号圆锥 3号圆锥 次 数       与圆柱是否等底等高       如何实验?分小组先议一议,再动手。(学生动手操作,教师巡视,发现问题及时指导。实验结束将小组记录单进行展示)2.组际交流,得出结论:(1)各组说说各种实验结果。  (2)观察数据,你发现了什么?(发现大多数情况下圆柱能装下三个圆锥的沙或水,也有两次多或四次不到等不同结果)  (3)进一步观察分析,什么情况下圆柱刚好能装下三个圆锥的沙或水?(各组互相观察各自的圆柱圆锥,发现只要是等底等高,圆柱的体积都是圆锥体积的3倍,也就是说在等底等高的情况下圆锥体积是圆柱体积的。) (4)是不是所有符合等底等高条件的圆柱、圆锥都具备这样的关系呢?(师用标准教具装水实验一次) (5)结论: ①圆锥的体积v等于和它等底等高圆柱体积的三分之一。 ②等底不等高的圆锥体与圆柱体,圆锥的体积不是圆柱体积的三分之一。 ③等高不等底的圆锥体与圆柱体,圆锥的体积不是圆柱体积的三分之一。3.启发引导,推导公式师:在 sh中,“sh”表示什么?为什么还要乘 ? 师:要求圆锥的体积必须知道什么条件?还要注意什么?师板书:圆锥体体积v=×sh三。简单应用 尝试解答工地上有一些沙子,堆起来近似于一个圆锥,圆锥的底面直径是 4米,高是米。这堆沙子大约多少立方米?(得数保留两位小数) 1.尝试计算。 2,集体讲评。 3.计算时要注意什么问题?四。分层练习,运用拓展1.基础练习(填表) 图形名称 已知条件 表面积 体积 圆柱 底面半径6cm     圆锥 底面积,高 ——   圆锥 底面直径6dm,高6dm ——   2.综合性练习 一个圆锥的底面积是15平方厘米,体积是60立方厘米,它的高是多少? 3.实践性练习 测量课前出示的铅锤的高和底面直径,计算铅锤的体积。  4.开放性练习 一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?     五。归纳收获,感悟体验   1、上了这些课,你有什么收获?(互说中系统整理)     2、用什么方法获取的?哪组表示最棒?     3、通过这节课的学习,你有什么新的想法?还有什么问题?     六。回归生活,延伸课堂 我们学校目前下在搞基建,操场上有好几堆圆锥形的沙堆,课余时间,各小组可以丈量计算这些沙堆的体积。注意平安噢!老师预祝你们胜利! 创设有儿童情趣。同学从熟悉的故事《曹操称象》中,理解了“大象”转化为“石头”的等量代换的数学方法,渗透转化的方法,为新知识作好铺垫和准备。 从铅垂直观引入,引发同学大胆猜测,发挥集体智慧,在不知道圆锥体积计算公式的情况下,讨论交流得出用“排水法”计算铅锤体积。     “猜想”有利于活跃课堂气氛,调动学生的课堂气氛,调动学生的学习积极性。)  通过探究,让学生尝试着理解圆柱和圆锥的关系,学生经历了独立思考的过程,有利于培养学生的逻辑思维和表达能力。合作前有明确的目的要求,分工合作。合作过程中学习能力好的学生带领学习困难的学生,组内成员有各自的任务,完成情况较好。           这个环节是这节课的重点和难点,安排每一位同学都动口说说实验的结论,加深对实验的理解。通过实验,既培养了学生的操作能力、合作能力,又让学生体会到实验是科学研究的  好方法,养成实事求是的科学态度。                            通过尝试练,加深对圆柱和圆锥关系的理解,深化所学内容。       作业的设计体现分层性。学习能力弱的学生针对本节课的内容做一些巩固性的练习;而学有余力的孩子可以在自己原有的水平上有所提高,可以把知识进行拓展。有利于不同层次的学生在原有的基础上有所提高,较好地落实了“人人掌握数学”和“不同的人学习不同的数学”这一教学理念。       关注学生的知识与技能的同时也注重学生的情感、态度、价值观,把自己收获与同学交流,既是对一节课自己知识掌握情况的回顾,也是对自己学习行为的评价。           开放时空,课堂延伸,真正让学生成为学习的主人,用数学知识解决生活实际问题,培养学生应用数学的意识和能力。

八。板书设计圆锥的体积圆柱的体积=底面积×高                      圆锥的体积= ×等底等高圆柱的体积= ×底面积×高字母公式:v= ×sh

《圆锥的体积》教案【第五篇】

现代教育理念强调以学生为中心,学习是获取知识的过程,强调知识不是通过教师传授得到的,而是学习者在一定情景下,借助其他人的帮助,即通过相互协作,讨论等活动而实现的过程。学生学习数学是一个探索的过程,学生在探索中了解实际问题中的各种关系,进而将实际问题用数学关系表示出来。在我们的课堂教学中因为经常要担心课堂时间不够用,教师不敢放手让学生去自主探索,尽量把这个过程压缩或甚至删除,但不可否认的是自主探索过程本身对学生数学意识的培养和数学思维水平的提高具有重要意义。要真正在小学数学教学中提高学生素质,教师就要更新教育观念,树立学生主体参与的意识。数学教师必须树立这样的学生发展观:

1.要相信每个学生都是特殊的个体,都是有自己个性、爱好的活生生的人,都需要尊重、信任和关怀。

2.要相信所有的学生都能学习,虽然存在差异但不存在绝对意义上的好与差,他们需要的是关心和指导。

3.要相信学生都有自我发展的需要,要给每个学生提供思考、表现、创造以及成功的机会,促进学生主动发展。

4.教学过程是一种活动,学生在其中是真正的主人。

依据上述的教育观来设计的数学教学全程,应该是一个开放的、活泼的、富有创见的多边活动的过程,真正使学生通过数学知识的窗口去认识世界,用数学中的思维方法去解决实际问题。

教学片段分析。

片段一:

(预期目标:通过让学生想象、动手画图、计算机的直观演示、给圆锥命名等一系列过程,将学生作为一个能动的个体,激发、尊重和发展学生的学习主动性,引导他们积极参与教学过程,主动探究知识。)

1、出示右图:这是一个         ,出示       与圆柱体有何不同?

请你想象一下,当这个圆面(指图上圆面)无限缩小,成为一个点时,是怎样的

一个图形?你能在草稿本上画下来吗?请你试一试。

2、课件演示过程:你画的和老师画的一样吗?请你给这个形状的物体起个名字。(圆锥)为什么?

分析:创设问题情境,让学生愿参与。所谓创设问题情境,就是教师在教学内容和学生求知心理之间创设一种“不协调”,把学生引入与所提问题有关的情境中,触发学生产生弄清未知事物的迫切愿望,诱发出探求性的思维活动。主要表现在设计有矛盾、有新意、有趣味的问题,激发学生参与的兴趣。

片段二:

(预期目标:把旧知“圆柱”与新知“圆锥”相联系,为探索活动定向。凸现等底等高现象,为圆锥体积学习做铺垫。通过适当“猜想”培养学生创新意识,培养学生积极进取的科学探索的素质,活跃课堂气氛,调动学生的学习积极性)

1.让学生把圆柱形的萝卜削成一个最大的圆锥体。

(1)你想怎么做?同桌互相说一说。

(2)学生动手操作,教师巡视指导。

2.汇报操作过程及发现了什么。

师问:你是怎样把一个圆柱形的萝卜削成最大的圆锥体形状的?

生1:让圆柱的底面积不变,削成的圆锥体就是最大的。

生2:我要补充还必须高不变,削成的圆锥体才是最大的。

师问:你通过把圆柱形的萝卜削成一个最大的圆锥发现了什么?

生1:我发现了这个圆锥的体积比原来那个圆柱的体积要小。

生2:我发现削成的这个最大的圆锥的底面积与原来圆柱的底面积相等。

生3:我发现了这个圆锥的高与圆柱的高相等。

师:到底这个圆锥与原来的圆柱的体积之间存在着什么关系呢?请同学们认真观察猜测一下。

生1:这个圆锥的体积是原来圆柱体积的一半。

生2:这个圆锥的体积比圆柱的体积小两倍。

生3:好像这样的3个圆锥的体积与原来圆柱的体积相等。

3、实验探索:

(预期目标:让学生放手操作比单纯看书、听讲更有利于知识的内化。通过实验,既培养了学生的操作能力、合作能力,促进学生的操作能力,合作能力,促进学生动作思维的发展。又让学生体会到,实验是科学研究的好方法,养成实事求是的科学态度。)

(1)到底它们之间有什么关系呢?咱们大家一块想个办法验证一下。

下面请同学们就上面的问题做个实验,请把学具拿出来。做实验前,看清实验要求。(微机显示实验要求)

⑴比一比:学具圆柱体,圆锥体的底和高,它们有怎样的关系?

⑵做一做:在空的圆锥里装满沙,然后倒入空圆柱里,看看倒几次正好倒满?

⑶想一想:通过实验你发现圆柱体和圆锥体的体积有怎样的关系?

(2)学生齐做实验,实验后同桌讨论“想一想”的结果,讨论后请一个同学在视频展示台上演示及汇报实验过程。

(3)当学生通过实验和讨论后,回答“想一想”的结果时提问:是不是任何一个圆柱都是任何圆锥体积的3倍?

(4)请这个同学完整地叙述这实验结果,同时微机显示结论⑴即圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥体的体积等于和它等底等高的圆柱体体积的三分之一。其它同学与他的想法一致吗?请大家一起读这个结论。

(5)归纳公式:v圆锥=v圆柱?=底面积高?。

因此,要求圆锥的体积,必须知道什么?(底面积和高)

分析:创设自主探索空间,增强实践全面参与。随着以培养学生创新精神和实践能力为目标的素质教育的全面实施,科学的教育理念越来越引起人们的关注,并尝试着去实践和推广。而心理学家皮亚杰曾指出:“一切真理都要学生自己获得或者由他重新发现,至少由他重建,而不是简单地传递给他。”智慧出在十指尖上。动脑和动手是紧密联系的,在教学中积极地创造条件,有意识地引导学生动手操作,可以促使学生左右脑平衡发展,更有助于他们发现和掌握规律,培养他们的思维能力。本课为学生提供了具体的实践活动,创设了引导学生探索,操作和思考的情境。整节课大部分时间学生都在操作,有独立的、有合作的、有猜想、有验证、有观察、有分析、有想象、有解决问题的策略。使学生在尽可能大的活动空间中切实体验到数学对解决实际问题是有用的。让学生在探究的氛围中自主地学习知识,发现规律,实际应用,从而获得成功的体验。

相关推荐

热门文档

22 2547828