首页 > 学习资料 > 教案大全 >

《平均数》教案精选4篇

网友发表时间 380228

【导言】此例“《平均数》教案精选4篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

平均数【第一篇】

平均数的应用教学内容   第43页例2教学目标1、  使学生掌握平均数的意义和求平均数的方法。2、  懂得平均数在统计学上的意义和作用。3、  培养应用所学知识合理、灵活解决简单的实际问题。教学重点使学生掌握平均数的意义和求平均数的方法。教学难点 培养应用所学知识合理、灵活解决简单的实际问题。教学过程:

一、创设情境引入新课

1、出示两个篮球队的身高统计表,让学生根据统计表说一说谁最高,谁最矮。

2、如果两个篮球队进行身高比较,你认为哪个队队员身高高些?

王强是欢乐队中最高的队员,我们能不能根据这个信息就下结论欢乐队总体身高比开心队高吗?为什么?

3、讨论:怎样比较两支球队的整体身高情况。

二、引导学生探究新知(引导学生探索用平均数的方法比较)

1、合作学习

让学生自己进行平均数计算。

2、提问:142厘米表示什么?它是指欢乐队某个队员的身高吗?

3、144厘米表示什么?它是指开心队某个队员的身高吗?

4、你能告诉我们两个队的总体身高比较情况吗?

虽然欢乐队中的王强是两个队中最高的,但欢乐队的总体身高情况不如开心队,体会平均数是反映一组数据总体情况的一个很好的统计量。说一说我们在生活中哪些地方也需要运用“平均数”知识来解决问题?

师:看到你们这么勤奋好学,又学得那么有水平。老师今天也特别高兴,我相信你们以后会发现和自学到更多的数学知识。其实“平均数“的知识还有很多,在生活实际中应用也很广,你们回忆得起来吗?对我们上课的评分,也可以来比较,哪一周课堂得分高、哪一周课堂得分低?我们也可以进行比较

出示上两周课堂评分。

[板书:      100分                   98]

[板书:     99分                     99]

[板书:      98分                     99]

[板书:     100分                    100]

[板书:      96分                     98]

[板书:      98分                     100]

你们认为第一周课课堂评分肯定比几分多,比几分少?

师生共同演算:

平均分是多少?

三、巩固练习:课本练习十一

全课小结。

第五课时    综合练习

练习内容第44页至第45页的练习。

练习目标应用所学知识合理、灵活解决简单的实际问题。教学过程一、复习本单元我们学过了哪些知识?知道了什么?学会了什么?二、指导练习第一题,是一道实践活动题,要让学生在进行实际调查的基础上,再估算平均身高和平均体重。每个小组计算完了以后,再在小组间对比一下,并和第39页中国10岁儿童身高、体重的正常进行比较,看看能发现什么信息。

第二题,先让学生根据图中的温度记录理解什么是最高温度,什么是最低温度,再把统计表补充完整,最后计算出一周平均最高温度和一周最低温度。

学生了解最高温度、最低温度、一周平均最高温度、平均最低温度等概念后,再让学生实际记录本地一周的气温情况,再计算出一周平均最高温度和平均最低温度。学生记录气温的方式可以通过广播、电视、报纸、网络等媒体获得信息。

第三题,也是一道实践活动题,通过收集、整理数据、计算平均等过程,进一步培养学生的统计能力。

第四题,让学生根据甲乙两种饼干第一季度的销量统计图,先比较他们第一季度月平均销量的多少,然后分析一下乙种饼干销量越来越大的原因,让学生初步体会统计在实际生活中的作用,挖掘数据背后隐藏的现实原因。第三小题是开放题,让学生根据统计图进一步发现信息,如学生会发现两种饼干二月份的销量是相同的,但甲种饼干的销量逐月下降,乙种饼干的销量逐月上升,也可以预测一下两种下个季度的销售情况。

第五题,让学生明确,王叔叔走的路程分为4段,一共骑了3天,而所求的是平均每天骑的路程,所以除数应是3而不是4。

三年级数学《平均数》教案【第二篇】

一.目标和目标解析

1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数。教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题。2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度。3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性。通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性。

二.教学过程设计

活动一:创设情景,建立模型,揭示概念

问题

1以前的学习,使我们对平均数由有了一些了解,知道平均数可以作为一组数据的代表,描述数据的“平均水平”,本节课我们将在实际问题情境中,进一步体会探讨平均数的统计意义。 在一次数学考试中,七年级1班和2班的考生人数和平均成绩如下表:

(1)谈谈表格中“86分”所反映的实际意义。

(2)求这两个班的平均成绩,并和同伴交流你的计算方法。

预设:问题(2)可能会出现下面两种解法:

引导学生对比、分析、讨论,初步理解权的意义。设计目的:

问题(1)中,86分是七年级1班46名学生的数学成绩“取长补短”均衡的结果,反映该班46名学生数学成绩的一般“平均水平”,设计的目的是引导并体会平均数的统计意义。

问题(2)中,以“任务布置──发现问题──生成问题──研究问题──解决问题”为教学程序,经历操作、观察、对比、分析、交流等探索活动,初步了解“权”的意义,解释计算加权平均数的理论依据,为概念的引入作铺垫。

活动方式:以实际问题为研究载体,以自主参与、交流合作为教学形式,以多媒体动画演示辅助为教学手段,引导学生积极参与数学探究活动,发展数学思维。本活动中,教师应关注学生:

①参与数学活动的主动性和数学思维的深刻性;

②实际问题中体验平均数的统计意义和初步了解权的意义;

③体会算术平均数与加权平均数的区别与联系。

学生归纳:

1.平均数反映的是数据的平均水平,;

2.“权”反映了数据的相对“重要程度”;

3.算术平均数与加权平均数的本质一致的,算术平均数是各数据的权为1的加权平均数,当数据的权相同时,加权平均数与算术平均数是相同的;当数据的权数不同时,加权平均数能更好地反映数据的平均水平,应当计算加权平均数。问题2 某市三个郊县的人数与人均耕地面积如下表:

求这个市三个郊县的人均耕地面积 (精确到公顷).

追问1:用算术平均数的方法求三郊县的人均耕地面积合理吗?为什么?

追问2: 0.

15、和这三个数中,那个数对总人均耕地面积的影响更大一些,你是怎么看出来的?这三个数的权分别是什么?你如何计算该市三个郊县的人均耕地面积的?

设计目的:以求三郊县人均耕地面积为研究载体,进一步引导学生认识加权平均数,渗透平均数的统计意义,理解权的意义以及为什么要采用加权平均数;在具体问题情景中,逐步建立并抽象出加权平均数这一数学模型;通过两种不同计算方法的比较,进一步体会算术平均数和加权平均数的区别与联系。活动方式:独立完成本问题任务,认真思考两个追问问题,交流看法和意见,教师做必要的指导或点拨,加深对权的意义的理解和用加权平均数计算的合理性;建立数学模型,抽象出加权平均数的计算方法。学生归纳:

(1)上例中15,7,10分别是0.

15、0.

21、三个数据的权,平均数称为三个数0.

15、0.

21、的加权平均数,反映三个郊县人均耕地面积的平均水平。

(2)若已知n个数及其对应的权,则这n个数的加权平均数可求。活动二:实例分析,指导应用,体验概念

1.统计某一植树小组所有同学的植树情况,其中有5人各植树8棵,有3人各植树7棵,有2人各植树10棵,求平均每人植树的棵数。思考:各项的权分别是多少?如何计算植树的平均棵树?

2.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下:

(1)如果公司想招一名口语能力强的翻译,听、说、读、写成绩按3:3:2:2 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?

问题3 招聘口语能力强的翻译时,公司侧重于哪些方面的成绩?给出的比值是否能体现这些方面更加“重要”?听、说、读、写四种成绩的权分别是多少?数据对应的权表示的含义是什么?

设计意图:在变式中理解权的含义。

问题4 如果现在要招聘一名笔译翻译,你能给各数据制定一个合适的权吗?制定的依据是什么?最后计算的结果与你设想的一样吗?试一试,比较你与其他同学设计的不同结果,谈谈你对数据权的作用的新认识。

设计意图:在系统中整体理解数据、权和平均数。通过解决实际问题,加深对权的作用的理解,探究权对平均数的影响。此处,借助于Excel的数据处理功能,给数据赋以不同的权,展示出现的不同计算结果,便于学生观察分析,从而更好地体现权的“掌控”作用。

问题5 若听、说、读、写的成绩分别按20%、20%、30%、30%的比例计入总成绩,如何计算应试者的平均成绩(百分制)?与(2)相比,数据权的表现形式发生了怎样的变化?

设计意图:进一步体会数据权的不同表现形式。 (自主合作,共同比较,交流分析,体会权的“掌控”能力。)

活动三:拓展创新,我来决策,感悟概念 一家广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:

假如你是该公司老总,请发挥你的才智,给每项成绩赋予适当的权数,并通过计算进行选拔。设计目的:创设情景,为学生创造参与数学活动的机会,亲身经历数学活动的过程,积累数学经验,在感受数学知识的同时获得成功的体验,强化数学的应用意识,增强学数学的积极性和热情;借助于Excel的数据处理功能,展示不同的权数下的不同结果,深入体会权的意义和作用。活动方式:猜想──设计──计算──体会──交流。

活动四:归纳小结,自主反思,优化概念

1.从下面的关键词中任选一个或几个,展示自己的演说才能,谈谈你本节课的收获或体会:

知识、方法、反思、猜想、交流、愉快、困惑、生活

2.布置作业:教科书P127页,练习第1题、第2题。设计目的:通过回顾和反思,让学生对数据的权的作用和加权平均数的意义有进一步的认识和理解,通过学生归纳和教师释疑,让学生优化概念、内化知识,同时让学生看到自己的进步,增强学生运用数学解决实际问题的信心,促进形成良好的心理品质。活动方式:反思学习过程,归纳并形成知识体系,交流体会和感受。三.目标检测设计(时间:15分钟;满分50分)

(一)填空题:(每题5分,共20分)

1.在“人与自然知识竞赛”中,七年级甲班5名同学的得分如下:9分、8分、9分、8分、9分。则这5名同学的平均成绩:= .

2.某人打靶,前3次平均每次中靶9环,后7次平均每次中靶8环,此人10次打靶的平均成绩:= .

3.从每公斤10元的水果糖中取出5公斤,每公斤12元的软糖中取出3公斤,每公斤9元的酥糖中取出2公斤,这三种糖混在一起后,这种“杂拌糖”应定价为每公斤 元.

4.若m个数的平均数是a,n个数的平均数是b,则这m+n个数的平均数是 .

(二)解答题:

5.(20分)某市去年7月下旬各天的最高气温统计如下:

(1) 计算该市七月下旬的平均气温。(5分) (2) (1)中所得到的平均数叫做

35、

34、

33、

32、28这5个数的 平均数。(5分)

(3) 在上面的5个数据中,35的权是 ,34的权是 ,28的权是 .(5分)

(4) 如果把35和28的权调换一下,平均气温是多少?与(1)的计算结果相比较发生了怎样的变化?由此你认为权在实际问题中的重要意义是什么?(10分)

6.(10分)某学校规定:学生的学期总评成绩由三部分组成:平时作业、期中测验、期末测验。小明同学的平时作业、期中测验、期末测验的数学成绩依次是98分、80分、90分。(1)若三项成绩分别按50%、20%、30%的比例计入学期总评成绩,这学期小明的数学总评成绩是多少?

(2)若三项成绩分别按5:2:3的比例计入学期总评成绩,小明的数学总评成绩是多少?

《平均数》教案【第三篇】

教学目标:

1、算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数。

2、体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力。

教学重点:

会求一组数据的算术平均数和加权平均数。

教学难点:

体会平均数在不同情境中的应用。

教学方法:

引导-讨论-交流。

教学手段:

多媒体

教学过程:

创设情景,引入新课(出示篮球比赛的一些画面)

在篮球比赛中,队员的身高是反映球队实力的一个重要因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?能因为甲队队员的最高身高高于乙队队员的最高身高,就说甲队队员比乙队队员更为高大吗?

上面两支球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?

活动1:前后桌四人交流。

找同学回答后,给出算术平均数的定义。

一般地,对于n个数x1,x2,…,xn我们把

叫做这个n数的算术平均数,简称平均数,记为 。读作“x拔”。

活动2:请同学们结合图表,自己用计算器算出各球队的平均身高,和平均年龄,看哪一个球队的平均身高高?哪一个球队的平均年龄小?

想一想:

小明是这样计算东方大鲨鱼队的平均年龄的:

年龄/岁 16 18 21 23 24 26 29 34

相应队员数 1 2 4 1 3 1 2 1

平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23。3(岁)

你能说说小明这样做的道理吗?找同学回答。

巩固练习一:

1。 某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童。每人捐款金额如下:(单位:元)

10,12,13。5,21,40。8,19。5,20。8,25,16,30。

这10名同学平均捐款 元。(课本P216随堂练习 1)

2。一名射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,平均每次射中 环(精确到0。1)

3。小明上学期期末语文、数学、英语三科平均分为92分,她记得语文得了88分,英语得了95分,但她把数学成绩忘记了,你能告诉她应是以下哪个分数吗?

A 93分 B 95分 C 92。5分 D 94分

例1某广告公司欲聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试。他们的各项测试成绩如下表所示:

测试项目 测试成绩

A B C

创新 72; 85; 67

综合知识 50; 74; 70

语言 88; 45; 67

(1)如果根据三项测试的平均成绩确定录用人选,那么誰将被录用?

(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时誰将被录用?

解:(1)A的平均成绩为 (分)。

B的平均成绩为 (分)。

C的平均成绩为 (分)。

因此候选人A将被录用。

(2)根据题意,3人的测试成绩如下:

A的测试成绩为 (分)

B的测试成绩为 (分)

C的测试成绩为 (分)

因此候选人B将被录用。

思考:(1)(2)的结果不一样说明了什么?

实际问题中,一组数据里的各个数据的“重要程度”未必相同。因此,在计算这组数据的平均数时,往往给每个数据一个“权”。如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称

为A的三项测试成绩的加权平均数。

巩固练习二:

1、某校规定学生的体育成绩由三部分组成:早锻炼及课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%。小颖的上述成绩依次是92分、80分、84分,则小颖这学期的体育成绩是多少?

变形训练:(小组交流)

1、甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混要一起,则售价应定为每千克 元;

2、某班环保小组的六名同学记录了自己家10月分的用水量,结果如下:(单位:吨):17,18,20,16。5,18,18。5。如果该班有45名同学,那么根据提供的数据估计10月份全班同学各家总共用水的数量约为 。

小结:先由学生总结,教师再补充。通过本节的学习,我们掌握了:1。算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数。2。体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题。

布置书面作业:课本P216习题8。1 1、2

课外作业:(两题任选一题)

1、到校医那里收集本班同学左眼视力检查结果,计算本班同学左眼视力的平均数。

2、请设计一个利用“加权平均数”方法来求平均数的应用题,再将其“权”作适当改变,观察平均值的变化。观察“权”的变化对结果的影响。

板书设计

1、平均数

算术平均数:

对于n个数x1,x2,…xn我们把

叫做这个n数的算术平均数,简称平均数,记为 。

读作“x拔”

例1解:(1)A的平均成绩为

B的平均成绩为 。

C的平均成绩为 。

因此候选人A将被录用 (2)根据题意,3人的测试成绩如下:

A的测试成绩为 (分)

B的测试成绩为 (分)

C的测试成绩为 (分)

因此候选人B将被录用。

加权平均数:称

为A的三项测试成绩的加权平均数。

求平均数【第四篇】

平均数

教学目标 :

1、结合统计的具体事例理解平均数的意义,会求简单的平均数。

2、能从各种信息中,发现并提出平均数问题,并探索的方法。

3、体会平均数在现实生活中的实际意义及广泛应用,逐步具有自主探索与合作交流的意识和能力。

4、体验平均数在描述事物时存在状态方面的优越性。对学生进行教育。

教学重难点:

理解和掌握的方法,理解平均数的意义。

教学关键:

通过实践活动使学生感悟平均数的含义,从而更好地掌握的多种方法,并能灵活应用,解决实际问题。

教学具准备:

红旗和黄旗各一面、课件、三个笔筒(21支铅笔)、乒乓球拍和乒乓球等。

教学设计:

本节课的教学脉络按“平均数”(数学概念)——(计算方法)——应用题(实际应用)逐步展开。

活动环节

教师活动

学生活动

设计意图

掂球比赛

引出争论

看!老师给你们带来了什么?高兴吗?像老师这样掂球你会吗?

好今天红队和黄队来比一比谁掂得多,有信心吗?

各队赶快推选出自己乒乓能手上台来!

谁愿意当裁判来数一数?

老师把大家的成绩统计在黑板上,请各裁判汇报!

看看比赛成绩哪个队获胜了呢?

…看来不能以某一个孩子的成绩来比;

…看来也不能以总成绩来比;

怎么办呢?通过本节课的探究,我们就能解决评优的问题。

裁判选手各就各位

掂球比赛

各裁判汇报成绩

大家发表自己的看法

创造性地使用教材,通过学生喜欢的体育运动到评选优胜小队,学生都乐于其中,所提的问题与已学知识构成矛盾,激发了学生的探究欲望。

笔筒分笔

方法渗透

老师先考考大家:怎样使这三个笔筒里的笔同样多呢?

…我们给这种方法取个名字叫“移多补少” ;

难道只有这种办法吗?

…老师给你的办法取个名字叫“先合后分”。

两种方法都可以知道平均每个笔筒里的笔有7支。

…同学们用了两种方法使笔筒里面的笔同样多,真聪明!

学生上台实际操作,同时说说过程。

通过简单的,具体生动的笔筒分笔,让每一个孩子初步体会到“移多补少” “先合后分”能使几种东西同样多。

学习例题

新知建构

1、出示例题。在废品回收活动中,四个小朋友上交的矿泉水瓶如图:

你获得的哪些数学信息?…你能提出什么数学问题?…

2、要求平均每个人收集了多少个?也就是要使每个小朋友收集的矿泉水瓶同样多,怎么办?…

3、学生汇报,教师边课件演示,过程之中给予适当的点拨,让学生的表述准确清楚。

4、谁能用算式表示出刚才“先合后分”的过程?…引导孩子说出用瓶子总的个数除以人数。

5、

6、小结。刚才孩子门用了两种方法都可以知道平均每个人收集了13个(课件演示统计表),这13个是小红收集的吗?是小兰收集的吗?是小美收集的吗?那这个“13”是个什么数呢?对,这个“13”就是这四个小朋友收集的平均数,同学们注意观察,这个平均数“13”与这四个小朋友实际收集的个数相比,你发现了什么?在全班交流…是呀,这个平均数13并不代表实际每个孩子收集的,而是反映的四个小朋友收集的整体水平,它比最多的15个少,比最少的11个多,是处于中间的一个平均水平。

学生汇报所获信息。

学生提出数学问题。

学生汇报,教师边课件演示,过程之中给予适当的点拨,让学生的表述准确清楚。

学生根据演示列出算式,

学生认真观察,分析平均数“13”的特点,各抒己见。

在学生体验了两种方法之后,探索的方法,感悟平均数的实际意义,用数学算式抽象出操作过程,使在浓厚的学习兴趣中,积极动手操作,动脑思考,呈现了知识的产生——发展——初步完善的过程。

评选优胜

运用新知

现在你们能用刚才所学的知识来解决“评优”问题了吗?怎么评呢?…

两个队交换计算平均数。

用平均数来评价两个队的成绩,现在大家觉得公平了吗?你是怎么认识平均数的?它有什么好处呢?…启发孩子明白平均数能较好地反映一组数据的整体水平。

是呀,平均数的作用真大,在日常生活中经常会用到它。

两个队交换计算平均数

评选优胜队

谈谈对平均数的理解。

首尾呼应,突出了孩子的主体地位,真正让孩子体验感悟平均数的优越性。

新知拓展

总结提升

1、教材44页第2题。气温。

2、平均数论坛。

(1)游泳池平均水深120厘米,小雪说:“我有142厘米,不会有危险的!”她说得对吗?

(2)数学故事:小陈应聘,他受骗了吗?公司员工平均月工资2000元,怎么理解呢?

3、小会计师。

4、教材45页第4题。

5、总结

记录本地一周的最高气温和最低气温,并算出平均最高气温和最低气温。

学生讨论交流

帮银河之星大擂台的选手算分。

(1)甲、乙两种饼干的平均月销售量谁多?多多少?(2)分析一下乙种饼干的销售量越来越大的原因。(3)如果你是该公司的老板你会怎么做?

相关推荐

热门文档

20 380228