一元一次方程(通用5篇)
【导言】此例“一元一次方程(通用5篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
元一次方程【第一篇】
一、说教材 方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。本节课的教学内容是《解一元一次方程》的第3课时。解方程既是本章的重点也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法。并通过练习归纳掌握解方程的基本步骤和技能。1、教 学 目 标(1)、知识目标:1、掌握解一元一次方程中"去分母"的方法,并能解这种类型的方程·2、了解一元一次方程解法的一般步骤·(2)、能力目标: 经历 "把实际问题抽象为方程"的过程,发展用方程方法分析问题、解决问题的能力,(3)、情感目标:1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望 2、通过埃及古题的情境感受数学文明。2、教学重点:通过"去分母"解一元一次方程3、教学难点:探究通过"去分母"的方法解一元一次方程二、说教法:在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。我的教学设计的指导思想是: 1、让学生自己去尝试发现问题,而不是被动的回答老师的问题、接受老师的答案。3、精心设计问题,因为好的问题设计能不断激发学习动机,还能给学生提供学习的目标和思维的空间,使学生自主学习真正成为可能。授课中通过一系列层层递进的问题,给学生充分的时间和广阔的思维空间,充分表达自己的想法,在此基础上解决问题并得出结论。三、说学法教学活动流程图 活动内容和目的活动1列方程解决实际问题 创设埃及古题问题情境,列方程解决该问题;发展利用方程方法解决简单实际问题的能力,再次感受方程是刻画现实世界量与量之间关系的主要模型之一·活动2解含有分母的一元一次方程 以学生已有的关于等式性质的数学知识基础,探索利用“去分母"的方法解一元一次方程·
活动3 "去分母"的方法解一元一次方程 用"去分母"的方法解一元一次方程,掌握 "去分母"的方法解一元一次方程应注意的事项;归纳一元一次方程解法的一般步骤· 活动4 小结 总结本节收获 活动1、创设问题情境: 引言:这件珍贵的文物是纸莎草文书,是古代埃及人用象形文字写在一种特殊的草上的著作,至今已有3700多年的历史了·在文书中记载了许多有关数学的问题· 问题 一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。(1)能不能用方程解决这个问题? (2)能尝试解这个方程吗? (3)不同的解法有什么各自的特点? 设计意图:1、利用列方程、解方程解决实际问题,再一次让学生感受方程的优越性,提高学生主动使用方程的意识· 2、经过对同一方程不同解法到去分母能够使解方程的过程更加便捷,明白为什么要去分母,这是 "去分母"这一步骤的必要性;同时,让学生认同"去分母"是科学的、可行的,明确为什么能去分母·这样,学生就会自觉参与探索去分母的一般做法的活动,从而发现"方程两边同时乘以所有分母的最小公倍数"这一方法·也首次由学生自行突破了难点。 3、通过交流,让学生用自己的语言清楚地表达解决问题的过程,提高学生的语言表达能力· 活动2 下面方程 可以怎样求解?观察方程,回答教师提出的问题并对学生的回答进行总结:先去分母·怎样去分母? 解去掉分母后的这个方程 归纳总结去分母的方法:在方程两边同时乘以所有分母的最小公倍数;依据是等式的性质2,即"等式两边同时乘同一个数,结果仍相等·"呈现不同学生的解题过程,选取学生在去分母过程中出现的典型错误,引导全体学生共同分析错误的原因,发现去分母的易错点·巩固了学生对解方程的透彻理解。这样做的目的不仅培养了学生的学习自主性和团体协作精神,还对与重、难点知识的突破起到了一定的促进作用。 通过对错例的辨析,加深学生对 "去分母"的认识,避免解方程时出现类似错误· 去掉分母后,方程即转化为熟悉的形式,新旧知识自然衔接,使学生体会到,只要把新问题想办法合理转化为熟悉的知识,问题就能得以解决通过在解方程过程中"去分母"这一步骤体会转化思想·活动3 解方程 设计意图:用实践来加深对 "去分母"的方法解一元一次方程的认识· 结合本题思考,能总结解这种方程的一般操作过程吗? 巩固所学的一元一次方程的解法,同时说明解方程的步骤是程序化的,但不能生搬硬套,每个步骤要不要使用、何时使用都应视方程的特征而定·了解对方程的每一次变形都是为了将方程最终化归为的形式·解题时应根据题目特点,合理选择解题步骤·小结活动4总结 (1)学生能否总结本节的知识,是否理解去分母的作用、依据,是否掌握去分母的具体做法; (2)学生是否掌握了一元一次方程解法的一般步骤; (3)学生是否能准确表达自己的观点· 最后复习、巩固本节的知识,学会总结反思·四。评价分析数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同参与发展的过程。本节课的评价要让学生体会到参与学习、与人合作的重要性,获得成绩的喜悦,从而激发性的学习动力。在这节的数学课,如要获得最直接、真实的反馈,就要尽量让学生多说、多思考,对于学生提出的问题和解决问题的方法,教师都要给予鼓励和引导,并随时观察解决,评价应充分考虑到每个学生的差异,这节课通过现代化的技术的运用,节省出尽可能多的时间,提出挑战性的问题,让学生通过开放式的数学讨论提高学生学习的兴趣,在交流中获益。通过随堂练习和作业来激励其学习。同时做练习时,将评价及时反馈给学生,树立学习数学的自信心,促进学生的进一步发展。并在课后作成长记录,使学生比较全面了解自己的学习过程,特别感受自己的不断成长和进步,为下一步教学提供重要依据。
元一次方程【第二篇】
教学目标1.在现实情景中深刻理解等式的性质,并能正确运用等式的性质。2.熟练掌握移项法则,利用移项法则解一元一次方程。教学重、难点重点:等式的基本性质,移项法则难点:对等式性质的理解和用移项的法则解方程。教学过程一 激情引趣,导入新课解方程 :2x-5=3x+6 你能说出你解这个方程每一步的依据吗?(一个加数等于和减去_______.)(导入新课:在小学我们学习了解方程,依据是加数与和的关系,因数与积的关系,还有没有别的依据呢?)二 合作交流,探究新知1 等式的性质 问题1 (一)班的学生人数等于(二)班的学生人数,现在每班增加2名学生,那么(一)班与(二)班的学生人数还相等吗?如果每班减少了3名学生,那么两个班的学生人数还相等吗?如果(-)班人数为a人,(二)班人数为b人,上面问题用含有a、b的式子怎样表示?问题2如果甲筐米的重量=乙筐米的重量,现在把甲、乙两筐的米分别倒出一半,那么甲,乙两筐剩下的米的重量相等吗?如果设甲筐米的重量为a,乙筐米的重量为b,上面问题用式子怎么表示?从上面两个问题,可以发现等式有什么性质?等式的性质1 等式两边都______(或者减去)_________(或同一个式子)所得结果仍是____.等式的性质2 等式两边都______(或者除以)_________(或同一个式子)(除数或者除式不能为0),所得结果仍是____.你能用式子表达等式的性质吗?2 尝试练习做一做(1) 说一说下面等式变形的根据①从x=y 得到 x+4=y+4, ② 从a=b 得到 a+10=b+10 ③ 从2x=3x-6得到 2x-3x=3x-6-3x ④ 从3x=9得到x=3, ⑤从 得到x=8用等式的性质解方程:4x+4=3x+12 归纳:(1)什么叫移项?把方程的某一项改变____后从方程的一边移到另一边叫______看看下面的变形是移项吗?2x+5-3x+6=9,解 :2x-3x+5+6=9练一练 用移项的方法解方程1 2x=x+3 2 3x-1=40+2x三 应用迁移,巩固提高1 实际应用例1 (我国古代数学问题)用绳子量井深,把绳子3折来量,井外余绳子4尺;把绳子4折来量,井外余绳子1尺,于是量井人说:“我知道这口井有多深了”。你能算出这口井的深度吗?(做完后交流讨论)2 游戏:请你任意圈出下面日历中竖列上三个相邻的数,求出它们的和并告诉我,我就知道你圈出的是哪三个数。四 课堂练习 ,巩固提高1 如果单项式 与 是同类项,则n=___,m=____2 如果代数式3x-5与1-2x的值互为相反数,那么x=____3 若方程3x-5=4x+1与3m-5=4(m+x)-2m的解相同,求 的值p 109 1,2 五 反思小结,拓展提高这一节你有什么收获?作业 p 118,1 、 2、3
《解一元一次方程》教案【第三篇】
一、教学目标:
1、知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。
2、能力目标:培养学生的运算能力与解题思路。
3、情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。
二、教学的重点与难点:
1、重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。
2、难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。
三、教学方法:
1、教 法:讲课结合法
2、学 法:看中学,讲中学,做中学
3、教学活动:讲授
四、课 型:新授课
五、课 时:第一课时
六、教学用具:彩色粉笔,小黑板,多媒体
七、教学过程
1、创设情景:
今天让我们一起做个小小的游戏,这个游戏的名字叫:猜猜你心中的“她”
心里想一个数
将这个数+2
将所得结果
最后+7
将所得的结果告诉老师
(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)
老师:同学们知道老师是怎样猜到的吗?
同学:不知道。
老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容——解一元一次方程。
2、探究新知:
一元一次方程的概念:
前面我们遇到的一些方程,例如 3
老师:大家观察这些方程,它们有什么共同特征?
(提示:观察未知数的个数和未知数的次数。)
(抽同学起来回答,然后再由老师概括。)
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程
叫做一元一次方程。
老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次
方程吗?
再次强调特征:
(1)只含一个未知数;
(2)未知数的次数为1;
(3)是一个整式。
(注意:这几个特征必须同时满足,缺一不可。)
3、例题讲解:
例1判断如下的式子是一元一次方程吗?
(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由。)
① ② ③
④ ⑤⑥
准确答案:①③
下面我们再一起来解几个一元一次方程。
例2、解方程
(1)
解法一:解法二:
提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号
(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)
(2)
解:
提示
1)、在我们前面学过的知识中,什么知识是关于有括号的。
2)、复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号
内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。
3)、问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起
来回答。
4)、问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。
5)、一起回顾合并同类项的法则:未知数的系数相加。
6)、系数化为1,运用了等式的'性质。
(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式。)
方程(1)该怎样解?由学生独立探索解法,并互相交流。
解一元一次方程的步骤:
去括号,移项,合并同类项,系数化为1。
4、巩固练习
(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)
(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)
5小结:和同学们一起回顾我们这节课学习了什么?
解一元一次方程
概念
含括号的一元一次方程的解法
作业:
1、P12 。1
2、预习下一节课的内容,
3、复习此节课的内容,并完成一下两道思考题。
思考:
(1) 解方程:
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括
号的方法去括号,每去一层括号合并同类项一次,以简便运算。
(2) 该怎么求解?
元一次方程【第四篇】
复习目标:
(1)了解方程、以及方程的解等基本概念。
(2)会解。
(3)会根据具体问题中的数量关系列出并求解。
重点、难点:
1. 重点:
及方程的解的基本概念。
的解法。
会用解决实际问题。
2. 难点:
的解法的灵活应用。
寻找实际问题中的等量关系。
典型例题
例1.
分析:明确的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。
在这里特别注意:未知数的次数及系数。
这三个方程中含有两个未知数x、y,要想成为就要使其中一个未知数的系数为0。
解:
例2.
分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。
此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。
解:
将m=1代入关于x的方程,得:
例3.
解:
注意:解的一般步骤为以上五步,但在解方程时,要注意灵活运用。
例4.
分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。
解:
例5.
分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。
解:
注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。
解:
例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。
分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为x m/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为x m
解一:设车的速度为x m/s
经检验,符合题意。
答:车的速度为20m/s。
解二:设车身的长度为x m
经检验,符合题意。
答:车的速度为(1000+200)/60=20m/s
例7. 某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票
售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?
分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。
解:设团体票共2a张,零售票共a张,零售票价x元
经检验,符合题意。
答:零售票价为元。
模拟试题
一。 填空题。
1. 已知方程 的解比关于x的方程 的解大2,则 _________。
2. 关于x的方程 的解为整数,则 __________。
3. 若 是关于x的,则k=_________,x=_________。
4. 若代数式 与 的值互为相反数,则m=_________。
5. 的解为x=0,那么a、b应满足的条件是__________。
二。 解方程。
1.
2.
3.
4.
三。 列方程解应用题。
1. 一商贩以每个鸡蛋元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个元售出,结果获利元,问该商贩当初买进多少个鸡蛋?
2. 分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?
试题答案
一。 填空题。
1. 2.
3. 1,1 4. 5.
二。 解方程。
1. 2.
3. 4.
三。 列方程解应用题。
1. 买364个鸡蛋
2. 戴红帽子4人,黄帽子3人
《解一元一次方程》教案【第五篇】
学习目标
1. 会设未知数,并利用问题中的相等关系 列方程,且正确求解
2. 会用一元一次方程解决工程问题
重点难点
重点:建立一 元一次方程解决 实际问题
难点:探究实际问题与一元一次方程的关系
教学流程
师生活动 时间
复备标注
一、 复习:
解下列方程:
=5y+5
2.
二、新授
例5 整理 一批图书,由一个人做要40小时完成。现在计划由一部 分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应安排多少人工作?
分析:这里可以把总工作量看做1。思考
人均效率(一个人做1小时完成的工作量)为 。
由x人先做4小时,完成的工 作量为 。再增加2人和前一部分人一起做8小时,完成的`工作量为 。
这项工作分两 段完成,两段完成的工作量之和为 。
解:设先安排x人工作4小时。
根据两段工作量之和应是总工作量,得
.
去分母, 得 4x+8(x+2)=-1701
去括号,得 4x+8x+16=40
移项及合并同类项,得
12x=24
系数化为1,得 X=-243.
所以 -3x=729
9x=-2187.
答:这三个数是-243,729,-2187。
师生小结:对于规律问题,首先找到各个数之间的关系,发现规律,在根据问题找等量关系,设未知数,列方程,解方程,解答实际 问题。转化为方程来解决
例4 根据下面的两种移动电话计费方式表,考虑下列问题。
方式一 方 式二
月租费 30元/月 0
本地通话费 元/月 元/分
(1)一个月内在本地通话20 0分和350分,按方式一需交费多少元?按方式二呢?
(2)对于某个本地通话时 间,会出现按两种计费方式收费一样多吗?
解:(1)
方式一 方式二
200分 90元 80元
350分 135元 140元
( 2)设累计通话t分,则按方式一要收费(30+)元,按方式二要收费元。如果两种计费方式的收费一样,则
=30+
移项,得 0. 4t - =30
合并同类项,得 =30
系数化为1,得 t=300
由上可知,如果一个月内通话300分,那么两种计费方式相同。
思考:你知道怎样选择计费方式更省钱吗?
解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。
归纳:用一元一次方程分析和解决实际问题的基本过程如下
三、巩固练习:94页9、10
四、达标测试 :《名校》55页
五、课堂小结:
(1) 这节 课我有哪些收获?
(2) 我应该注意什么问题?
六、作业: 课本第94页第9题 学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:
(1)每一步的依据分别是什么?
(2)求方程的解就是把方程化成什么形式?
先让学生读题分析规律,然后教师进行引导:
允许学生在讨论后再回答。
在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数
学生独立解方程方程的解是不是应用题的解
教师强调解决 问题的分析思路
学生读题,分析表格中的信息
教 师根据学生的分析再做补充
学生思考问题
教师根据学生的解答,进行规范分析和解答