首页 > 学习资料 > 教学反思 >

一元一次方程教学反思通用4篇

网友发表时间 441121

【前言导读】此篇优秀教学范文“一元一次方程教学反思通用4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

元一次方程【第一篇】

一、教学目标 :

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、通过观察,归纳的概念

3、积累活动经验。

二、重点和难点

重点:归纳的概念

难点:感受方程作为刻画现实世界有效模型的意义

三、教学过程

1、课前训练一

(1)如果 | | =9,则  =           ;如果 2 =9,则  =

(2)在数轴上距离原点4个单位长度的数为

(3)下列关于相反数的说法不正确的是(     )

A、两个相反数只有符号不同,并且它们到原点的距离相等。

B、互为相反数的两个数的绝对值相等

C、0的相反数是0

D、互为相反数的两个数的和为0(字母表示为 、 互为相反数则 )

E、有理数的相反数一定比0小

(4)乘积为1的两个数互为 倒数  ,如:

(5)如果 ,则(      )

A、 , 互为倒数   B、 , 互为相反数    C、 , 都是0    D、 , 至少有一个为0

(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过 周后树苗长高到1米,依题意得方程(     )

A、    B、    C、   D、 00

2、由课本P149卡通图画引入新课

3、分组讨论P149两个练习

4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为 米,那么长为( +25)米,依题意可列得方程为:(      )

A、 +25=310   B、 +( +25)=310   C、2 [ +( +25)]=310   D、[ +( +25)] 2=310

课本的宽为3厘米,长比宽多4厘米,则课本的面积为             平方厘米。

5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回元。已知每个笔记本比练习本贵元,求每个练习本多少元?

解:设每个练习本要 元,则每个笔记本要         元,依题意可列得方程:

6、归纳方程、的概念

7、随堂练习PO151

8、达标测试

(1)下列式子中,属于方程的是(     )

A、    B、     C、   D、

(2)下列方程中,属于的是(       )

A、     B、     C、    D、

(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

解:设甲队胜了 场,则平了          场,依题意可列得方程:

解得 =

答:甲队胜了        场,平了        场。

(4)根据条件“一个数 比它的一半大2”可列得方程为

(5)根据条件“某数 的 与2的差等于最大的一位数”可列得方程为

四、课外作业 P151习题

元一次方程【第二篇】

一、学习目标

1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

二、重点:

解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

难点:去分母法则的正确运用。

三、学习过程:

(一)、复习导入

1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)

2、回顾:解一元一次方程的一般步骤及每一步的依据

3、(只列不解)为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_____棵。

(二)学生自学p99--100

根据等式性质,方程两边同乘以,得

即得不含分母的方程:4x-3x=960

X=960

像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是

(三)例题:

例1解方程:

解:去分母,得依据

去括号,得依据

移项,得依据

合并同类项,得依据

系数化为1,得依据

注意:

1)、分数线具有

2)、不含分母的项也要乘以(即不要漏乘)

讨论:小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正。

(1)方程去分母,得

(2)方程去分母,得

(3)方程去分母,得

(4)方程去分母,得

通过这几节课的学习,你能归纳小结一下解一元一次方程的一般步骤吗?

解一元一次方程的一般步骤是:

1.依据;

2.依据;

3.依据;

4.化成的形式;依据;

5.两边同除以未知数的系数,得到方程的解;依据;

四、小结:

谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。

五、课堂检测:

1、去分母时,在方程的左右两边同时乘以各个分母的_____,从而去掉分母,去分母时,每一项都要乘,不要漏乘,特别是不含分母的项,注意含分母的项约去分母分子必须加括号,由于分数线具有

2、解方程

(1)2x+5=5x-7

(2)4-3(2-x)=5x

六、作业

P102:3,10.

元一次方程教学反思【第三篇】

今天的数学课我给同学们讲了追及相遇问题,之所以选择这个主题,是因为追及相遇问题是生活中很常见的数学问题,而且完美体现了数形结合的数学思想。在教会他们直接求解的方法之外,我还想通过初步引入未知量,一元一次方程的概念,来拓宽孩子们的视野,发散孩子们的思维,让孩子们对待同一个问题拥有更多的思路。

在备课过程中,我遇到一些麻烦,因为看到追及相遇问题就想列方程去解答,利用直接法去计算让我很头大,在不断搜例题看答案解析的过程,我开始渐渐明白直接法中蕴含的道理。这节数学课对我和孩子们来说是一个双向学习,共同成长的过程,带给孩子们方程思想的同时,孩子们的角度也为我增加了一种新思路。

在讲解追及相遇问题时,我通过生活中有趣的的情景模拟来举例题,比如军队追及敌人,小朋友找彼此玩相遇等等,我感觉这样会使同学们更加有画面感,从而更加容易去理解题意,进而解决问题。我边描述题干边在黑板上画出对应的简图,同学们兴致勃勃,跟我一起念起题干来。

同学们原来接触过追及相遇问题,而他们只是记住了公式,当我问他们为什么相遇时间等于总路程除以速度和,为什么两个人相向而行速度就要求和呢?大家沉默了。在遇到这种类似的问题,孩子们只是机械的套用公式,并不理解其中的奥义。通过讲解参考系,孩子们对这个公式有了更立体的。理解。

在用直接法解答完几个例题之后,我回到第一个例题,告诉孩子们还有更简单的方法去求,孩子们热情高涨,都急于知道究竟是什么方法。在跟他们讲解不知道的量可用参数来表示,然后利用假设的参数列出关系式就可以解出答案之后,我发现孩子们并不是都能理解这种解法,孩子们第一次接触未知量和方程,思想的转变并不是那样容易。成功就是将简单的事不断重复,就像高中老师经常说的那句话"重复是学习最有效的工具"。孩子们说不是很懂,我便再讲一遍,只第一道例题,我用方程法就讲了三遍,结合提问,在讲完第三遍之后有更多的孩子表示能看懂关系式,回应积极。

其他例题我引导孩子们用方程法去考虑,很多孩子都积极举手起来分享自己列的关系式,看到孩子们小小的心里埋下方程这个奇妙的种子,我心中的喜悦无法言喻。

初中七年级上册数学《解一元一次方程》教案优质【第四篇】

一、三维目标。

(一)知识与技能。

能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

(二)过程与方法。

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

(三)情感态度与价值观。

培养学生主动探究、合作交流的意识,严谨治学的学习态度。

二、教学重、难点与关键。

1、重点:去括号法则,准确应用法则将整式化简。

2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。

3、关键:准确理解去括号法则。

三、教具准备。

投影仪。

四、教学过程,课堂引入。

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

五、新授。

现在我们来看本章引言中的问题(3):

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为()小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120()千米,因此,这段铁路全长为100t+120()千米 ①

冻土地段与非冻土地段相差100t—120()千米 ②

上面的式子①、②都带有括号,它们应如何化简?

利用分配律,可以去括号,合并同类项,得:

100t+120()=100t+120t+120(-)=220t-60

相关推荐

热门文档

21 441121