植树问题教案优推4篇
【阅读指引】阿拉题库网友为您分享整理的“植树问题教案优推4篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
植树问题教案【第一篇】
教学内容:义务教育课程标准实验科书(人教版)四年级下册第117--118页例题及相关练习。
教学目标:
知识性目标:1、利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。2、通过小组合作、交流,使学生发现并理解段数与棵树之间的规律,并利用规律解决一些实际问题。
能力目标:让学生经历感知、理解知识的过程,进一步培养学生从实际问题中发现规律;运用规律解决问题的能力。2、渗透数形结合的'思想,培养学生借助实物,图形解决问题的意识。
情感目标:培养学生的分析意识,养成良好的交流习惯,感觉日常生活中处处有数学,体验学习的成功喜悦。
教学重点:引导学生发现植树与间隔数的关系。
教学重点:理解间隔与发现植树棵数的规律并运用规律解决问题。
教学准备:课件、学生用尺子、纸等。
教学过程:
一、导入新课
1、讲故事:(略)这个故事告诉我们:我们在说话、做事情时不能信口开河,不加思索来完成。
2、揭示课题:
明天就是“六一”儿童节,我们的节日有很多,同学们你们知道吗?3月12日是什么节?(植树节)其实,“植树”这件事还很有数学上的学问,今天我们就来研究“植树问题”(板书课题)
二、新授。
1、出示准备题:
同学们在全长100米的小路去植树,每隔5米分为一段,一共可以分成多少段?
100÷5=20(段)
2、出示例题
同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?
(1)读题分析理解:“一边植树,两端要栽”的意义。
可能许多同学列成:100÷5=20(棵)
(2)学生试做。
让学生讨论。
3、感知间隔的含义
请你们伸出右手,张开,数一数,5个手指间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间的有几个间隔?4个间隔是在几个手指之间?
4、学生依次画图,课件依次演示画图过程的算法。
段数棵数
12
23
34
56
通过上面的分析,你发现了什么?
棵数=段数+1
或:段数=棵数-1
5、完成例题。A:先要求出段数:100÷5=20(段)
B:再次求出棵数:20+1=21(棵)
6、再次感知,找到规律
课件上做习题栽了8棵树,有()个间隔。(两端都要栽)
有20个间隔,栽了()棵树(两端都要栽)
三、尝试练习,做一做
课件:1、园林工人沿路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?
2、做书上的练习P122(练习二十)。T1、T2写在书上。
四、巩固加深,拓展。
1、打开书P117读书,思考。
2、你在这一节课有什么遗憾?
3、你在这节课中有什么收获?
4、联系生活举例,加深理解。
五、总结延伸
植树问题还有许多学问,今天我们只是解决了两端都栽,如果两端都不栽,封闭图形(如圆形花坛)栽树又怎样计算等待下一节课再去研究。
板书设计:
段数棵数学生练习板演
12
23
34
45
规律:棵数=段数+1
或:段数=棵数-1
植树问题教案【第二篇】
植树问题是在一定的线路上,根据总路程、间隔长和棵数进行植树的问题。下面给大家提高了植树问题例3的教案设计,一起来看看吧!
教学内容:人教版新课标实验教材,四年级数学 下册P120的例3,P121的做一做,练习二十第4、6、7题
教学目标:
1、掌握在一个封闭图形中植树问题的解答方法,并能灵活运用这一基本方法解决生活中存在的与“植树问题”类似的实际问题。
2、在探索和解决问题中,体会从简单到复杂的数学推理方法,体验数学学习成功的喜悦,增强学好数学的信心。
教学重难点:掌握封闭图形中“植树问题”的解决方法
教具准备:正方形,围棋棋盘、棋子
教学过程:
一、激趣导入
脑筋急转弯:把4棵树栽成4行,每行数数都有2棵?怎么栽?
1、让学生独立思考,提示学生可用画图的方法进行思考。
2、全班交流,找出方法,并在正方形上把它表达出来。
3、观察这个图形,你有什么发现?与我们前面学习的植树问题有什么不同?
4、在学生的思考中,导入新课,板书课题:植树问题
二、探索规律
1、教学例3
(1)出示围棋棋盘
数一数
围棋棋盘的最外边每边能放几个棋子?(19个)
(2)算一算
最外层一共可以摆放多少个棋子?
学生先独立思考,寻找出自己的计算方法
全班交流,学生叙述自己的算法和结果
方法一:19×4=76(个)
方法二: 19×4-4=72(个)
方法三: 18×4=72(个)
(3)议一议
全班交流,指名叙述每种方法的理由。
方法一忽略了角上算重的情况,多算了4个。
方法二考虑了4个角上算重了,所以在总数中去掉了多算的4个。
方法三每边都只算一个端点,这样每边有18个,3边正好是6个。
(4) 比一比
你用了哪种思考方法,还有其它方法吗?你认为哪种方法最好?
(5) 想一想
前面我们已经学习了在一条线段上植树的问题,知道间隔数和棵数之间的关系,那么我们现在来观察一下,围棋最外层摆放的棋子有多少个间隔?学生自主探究:数一数间隔数,指名回答,围棋最外层摆放的棋子数等于最外层每两个棋子的间隔数。
(6)类推
钟面上有几个数?想一想:钟面上每两个数之间有几个间隔?一个五边形有几个顶点?如果在五边形的水池边摆上花盆,使每一边都有5盆花,最少需要多少盆花?
(7)归纳规律
与前面学习的内容比较及在练习中你发现了什么?即封闭的图形的“植树问题”有什么规律?组织学生讨论,在学生回答的基础上总结出:植树的棵数正好等于间隔数。
2、解决问题
(1)补充习题:24名学生做游戏,大家围成一个正方形,每边人数相等,四个角上都有人,每边各有几名同学?
(2)学生自主探究或和同伴交流,教师巡视指导后进生用画图的方法帮助理解。
(3)集体交流,指名学生说出算理。
(4)教师有针对性地进行指导,并启发学生以每边人数求总人数的方法进行验证。
三、巩固练习
例3后面的“做一做”
四、课堂小结
今天我们学习的是封闭图形内的。“植树问题”。你发现了什么规律?
五、作业布置:练习二十第4、6、7题。
教学反思
一、寻找例题间的联系
封闭图形中的植树问题例3教学前,学生只是通过直观的方式与以往的知识经验来解决的,此时的学生很少把它看作植树问题,因此教学时我安排摆棋子一环节,主要用意在于:1、巩固练习围棋问题中的解决方法。2、通过这道题把它与植树问题进行沟通,使学生知道其实这些题也可以用植树问题的思考方法来解决。3、虽然教参中并没有强求学生一定要探索出封闭图形植树问题中的规律(即间隔数等于棵数),但这个规律对学生后继的学习很重要,学生可以利用这个规律更容易解决一些实际问题,比如:在解决正多边形的植树问题时,特别是在解决封闭曲线的植树问题(如绕一个圆形的溜冰场一周种树时)显得尤为方便。否则,学生很难想到用间隔数去解决问题,也和前面的例1、例2失去了联系。所以我要通过这道题来与植树问题进行沟通,初步感知规律,然后再回到例3中的问题,引导学生用植树问题的思考方法再次解决例3。并在沟通的过程中,让学生有所感悟:封闭图形的植树问题都可以按照一端种一端不种的植树问题的规律(即间隔数就等于棵数)来加以解决。
二、精心设计教学流程
教学时我是这样设计的:大屏幕出示围棋图,先让学生数一数每边有多少棋子,学生数出每边都有19个棋子。然后,接着问学生那正方形的4条边也就是一周一共多少颗棋子?放手让学生自己去解决出现了不同的结果,很多学生开始都认为每边放19个棋子,四条边,就用19×4=76个,而有的通过数,发现实际只数出有72个棋子,那为什么是72个而不是76个呢,有少部分同学能够发现“四个顶点上的不能重复算”,因此他们能够很快地列出算式:19×4-4=72个。最后,还有没有其他的方法,19×2+17×2=72个,还有18×4=72,然后老师重点引导新思路为什么是18×4,让学生自己去争论,发现规律:封闭图形棵树等于间隔数。
三、反思不足促进教学
不足之处:
1. 对于围棋中得植树问题,数量相对比较大,学生想象比较难,教学时引导不够,学生思考不到位。最好应该放慢教学速度,给学生动手操作的时间,这样感触更加深刻。
2.部分学生区分不开:间隔数和间距的概念,应该结合生活中得实例来说明。
3.在学习了三种类型的植树问题之后,对于给出的一些生活中类似植树问题相类似的问题,学生搞不懂是哪一种类型的植树问题。
植树问题对于学生的掌握,相对比较难,以上是我在教学中发现的学生中存在的问题,针对这些问题,安排一节练习帮助学生巩固和掌握。
植树问题教案【第三篇】
学情分析:
四年级的学生以形象思维为主,而且抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。
教材分析:
“植树问题”原本属于经典的奥数教学内容,而解决植树问题的思想方法是实际生活中应用比较广泛的数学思维方法。本册“数学广角”主要是渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
这个数学内容既需教师的有效引领,也需要学生的自主探究。而例1是探讨关于一条线段的植树问题并且两端都要栽树的情况,让学生先通过画线段,再来发现栽树的棵数和间隔数之间的关系,从而会应用植树问题的模型解决一些相关的实际问题。
设计理念:
《新课标》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”所以解题不是本节课教学的主要目的,主要目的是从实际问题入手,引导学生在培养学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。
教学内容:
人教版实验教科书数学四年级下册第117—118页的例1及相应的“做一做”。
教学目标:
知识与技能:
1、理解间隔概念,知道间隔数与棵树之间的`关系,初步建构植树问题的数学模型。
2、能根据数模解决简单的实际问题,培养学生观察、分析及推理能力。
数学思考:
1、让学生经历观察、猜想、自主实验、探究、交流,从中发现规律,抽取数学模型过程。
2、使学生经历和体验“复杂问题简单化”的解题策略和方法。
解决问题:
能够应用本节所建构的植树问题的数模以及探寻到的规律,针对实际情形灵活的来解决问题。
情感态度与价值观:
让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学重点:会应用植树问题的规律解决一些相关的实际问题。
教学难点:建构数模,探寻规律。
教学准备:课件、实物投影仪、每组一张表格
教学流程:
一、创设情景,导入新课。
1、猜谜语
师:“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。猜到了吗?”“对!就是这双勤劳的双手。请同学们伸出左手五指张开,看看你能想到哪个数?”“5是指5个手指,胡老师想到了4,你知道在哪吗?”“在数学上我们把这些空格叫做间隔(板书:间隔)也就是说5个手指之间有4个间隔,间隔数是4。”
“现在看老师的手变魔术了,5个手指有4个间隔,4个手指有3个间隔……你们找出手指数与间隔数之间的关系了吗?”(指名说)
2、找间隔
“生活中的间隔随处可见,请看大屏幕。你找到间隔了吗?”(出示课件2—4)
“我们的身边还有间隔吗,一起来找找吧!”
3、揭示课题
出示课件5、6。师:“你更喜欢那组画面?怎样才能拥有这样美丽的环境呢?”
“对!植树造林,美化环境是我们每个人应尽的义务!说到植树,大家知道吗?在我们数学王国里植树可是有一定的学问的。这节课我们就来探讨植树问题。”(板书:植树问题)
二、自主探究,构建模型
师:“春天到了,为了美化校园,我们学校也要植树,想当环境设计师吗?看看具体要求。”(出示课件7、8)
1、设计不同方案
师:“画一条线段表示12米的小路,你想怎么载就用示意图或线段图画出来吧!”教师巡视。
2、展示不同方案
投影仪展示学生的设计方案,问:“你是怎么画的?”
师板书三种情况,分别是:两端都栽,只栽一端,两端都不栽。
师:“今天这节课我们先来探讨两端都栽的情况。”
3、小组探索、加强体验
(1)提出问题
出示例1(课件9)学生默读题目,找出关键词并做解释。
师:“需要多少棵树苗呢?”指名说出不同的答案并板书。
师:“现在出现了3种不同的答案,而且每种都有不少的支持者,到底哪种答案对呢?”小组讨论,并说出理由。
(2)验证猜想
演示课件9师:“我们用这条线段表示这条路,两端都种,先在头上栽一棵,再一棵一棵的栽……这样栽下去,你有什么感受?”(太麻烦)“老师也有同感,其实像这种比较复杂的问题,在数学上还有一种更好的研究方法,想知道吗?就是将复杂问题简单化,在这里100米太长了,我们可以先在短距离的路上种种看。”(出示课件10)
分组画出不同路长的栽法,小组展示栽的棵数。师“为什么这么画?”
(3)总结规律
小组内填写表格,观察:“你发现了什么规律?”板书规律
“刚才通过画图知道了棵数,能不能通过计算得到呢?”
师:“根据刚才发现的规律你知道例1的答案了吗?会列式计算吗?”(出示课件11)
4、运用规律
(1)现在我们的小手的5个手指看成5棵树,你能说说今天发现的规律吗?同桌相互说一说。
(2)出示课件12“比一比谁的反应快” 在两端都栽的情况下,有8个间隔共要种几棵树?有10个间隔共要种几棵树?如果已种了6棵树有几个间隔?如果已种了10棵树有几个间隔?
三、巩固应用,内化提高
师:在日常生活中,在我们周围有许多类似于植树问题的现象小明就在不同的地方找到了,咱们来看看吧。
1、公共汽车上(出示课件13)
2、公路上(出示课件14)
3、上楼梯(出示课件15)
4、钟表上(出示课件16)
引导:师边模仿钟响边板书,学生击掌感受第一响与第二响之间有间隔。
四、回顾整理,反思提升
师:通过今天的学习,你有什么收获?
“对!今天你们发现了植树问题中的重要规律,我们是怎么得到的?”“你还学到了什么方法?”(复杂问题简单化)
“收获方法比收获知识更重要,祝贺大家!”
板书设计:
植树问题
两端都栽
棵数=间隔数+1
间隔数=路长÷间距
路长=间隔数×间距
100÷5+1=21(棵)
植树问题教案【第四篇】
教学内容:
《植树问题》是新课程标准实验教材四年级下册的内容。
设计理念:
《新课标》指出“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“植树问题”通常是指沿着一定的路线,这条路线的总长度被分成若干间隔。由于路线不同,植树要求不同,路线被分成的间隔和植树之间的关系就不同。本节课主要通过让学生自主探究、分析、比较的方法,找“植树问题”的规律。
学期与教材分析:
教材将植树问题分为几层次:两端都栽、两端不栽、环形情况等,其目的在于通过解决问题渗透数学思想方法。不同的教师在处理植树问题的教学上各有差别,而俞正强老师,一个衣着朴素、老式的布鞋、光亮的脑门、憨厚的笑容,对“植树问题”有自己独特的教学和见解,他抛开课本给出解决植树这类型问题的'方法,从练习题的引入出发,层层递进的引导学生思考、分析、具体问题具体分析,使学生在轻松、愉快的学习氛围中完成。
教学目标
1、通过动手操作、合作交流,理解一条线段上植树问题的规律。
2、学会应用植树问题的模型去解决实际问题的方法。
3、经历和体验“复杂问题简单化”的解题方法和策略。
教学重难点
引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。
为完成上述教学内容和目标要求, 俞老师从简单的习题着手,进一步联系到生活中的植树等实际问题,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。
一、练习引入,构建新知。
课前创设简单易懂的题目“20米,平均每5段一份,可以分几份?”学生很快列出算式20÷5=4(段),紧接着引出例题“20米路,每5米栽一棵树,可以栽几棵?”学生列出算式20÷5=4。
俞老师没有直接告诉学生答案,而是询问,为什么用除法?问题(1)中两道题有什么共同点?目的在于,让学生在练习中,突现知识的起点----平均分。而不同点又是什么?一是求点数,一个求线段。那么一共可以栽几棵树呢?学生通过观察知道了一共可以栽4+1=5(棵)树,整节课条理清晰,层次分明,浅显易懂,始终围绕重点内容进行展开教学。
二、注重实践,体验探究。
教学中,俞老师多次引导学生观察、假设、思考,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个端点,也就是要在5棵树。使学生发现和理解,植树问题并非简单的除法就可以解决,植树问题种在的地方就是点,而非线段上,接着俞老师从生活实际出发,引导学生思考和观察,生活中哪些人把什么做在点子上?学生通过思考后纷纷答道:电线杆、垃圾桶、栽花、纽扣、排队等,从而发散了学生的思维,激起了学生的学习兴趣。在学生兴趣盎然的时候,俞老师提出问题“段数和点数有什么样的关系?”启发学生透过现象发现规律,也就是栽树的棵树要比段数(间隔数)多1。让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、联系生活,拓展思维。
体验是构建的基础,俞老师通过有趣的游戏激发学生理解植树在实际生活中的利用。让一排学生当“点”每2米栽一棵树,可以栽几棵树?转变为如果路尽头有了一座房子,我们该怎么植树?如果路的头尾各有一个房子,又怎么植树?栽几棵?简单实在的实际问题,把本节课的知识点良好的应用到实际生活当中,使学生从旧知向隐含的新知迁移了,本节课也因此达到了升华。
总之,本节课,以学生的设计为出发点,通过线段这一简洁、直观的方法的观察、分析,引导学生积极认真的思考,进而透过现象发现不同情况下的棵树与段数之间的关系。本节课,俞老师没有课件,一支粉笔,一块黑板,真正是一节难得的常态课,值得我学习和借鉴。