首页 > 学习资料 > 教案大全 >

植树问题教案(优质4篇)

网友发表时间 887257

【导言】此例“植树问题教案(优质4篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

植树问题教案【第一篇】

设计理念

本课通过生活中的事例,调动学生已有的生活经验,接触一些重要的数学思想方法,经历猜想、实验、推理等数学探索过程,激发学生对数学的好奇心和探求新知的兴趣,增强学习数学的兴趣。以学生发展为本,着眼于数学思维能力的培养。注重引导学生充分体验探究过程,感受数学在日常生活中的广泛应用,培养学生的观察比较、动手操作、分析概括能力以及语言表达能力。

教学内容

《义务教育课程标准实验教科书数学》(人教版)四年级下册第117页。

学情与教材分析

“植树问题”是人教版四年级下册“数学广角”这个单元的一节内容。和前几册教材一样,主要是向学生渗透一些重要的数学思想方法。本课主要是渗透有关植树问题的一些思想方法,教学时通过现实生活中的一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

教学目标

1、通过动手操作、小组合作,使学生能理解间隔数与植树棵数之间的规律,并将这种规律应用到解决类似的实际问题之中。

2、培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力。渗透数形结合的思想,培养学生借助图形等方式解决问题的意识。

3、培养学生的合作意识,养成良好的交流习惯。通过实践活动激发热爱数学的情感,感受数学与现实生活的密切联系,体验学习成功的喜悦。

教学重点

引导学生发现不封闭线路上,两端都栽时间隔现象的简单规律。

教学难点

运用规律解决类似的实际问题的方法。

教学准备

电脑课件、泡沫条、小树模型、表格等等。

教学过程

一、创设情境,引入新课

1、初步感知植树方法的多样化

师:春天是个植树的好季节,你们知道植树有哪些好处吗?

植树原来有这么多的好处啊。这节课,我们就一起来研究植树中的数学问题。(板书课题)

(课件出示)兰兰想在门前小路的一侧种上三棵小树苗来美化环境。你们能帮她设计出一种方案吗?

请学生上台用课件演示:鼠标移动书苗介绍设计方案

学情预设:有的学生在小路两端各栽一棵,中间栽一棵;有的'学生把三棵都栽在中间;有的学生从一端栽起,另一端不栽。

师示范给一种方案命名,其他方案请学生命名。

结论:(1)两端都栽。

(2)只栽一端。

(3)两端都不栽。

(板书)

设计意图:将生活中常见的植树问题,整体地呈现出来,培养学生“用数学”的意识,渗透“生活中处处有数学”的思想。放手让学生设计方案并冠名,充分体现学生的主体地位。

二、动手操作,探究新知

1、教学例1

本节课我们主要学习两端都栽的植树问题。

(1)出示例1:六年级的学生想在全长100米的校园小路一边植树,每隔5米栽一棵(两端都栽),一共要准备多少棵小树苗?

读完题目,你们获得了哪些信息?

猜猜看,一共要准备几棵小树苗?

设计意图:培养学生认真审题的好习惯。学生在猜想的过程中可能会出现几种不同的答案,到底哪种答案对呢?留下悬念,引发思考,激发学生探究新知的欲望。

(2)学具操作,初步探究

到底谁的答案是对的呢?我们先取100米中的一小段20米来研究。

小组合作,用学具模拟栽树。思考:两端都栽的时候,应该栽多少棵?

学生展示学具,汇报模拟结果。

学情预设:学生汇报:每隔5米栽一棵,所以在5米,10米,15米,20米的地方各栽一棵。两端都要栽,所以在0米的地方又栽一棵,一共是5棵。

(3)教学画线段图

我们用一条线段来代表20米长的小路,用几个点来代表小树苗。这就是我们经常要用到的线段图,线段图可以很好地帮助我们思考。(课件展示)

师:这几个点除了可以代表小树苗,还能代表其他的东西吗?引导学生发现点可以表示很多物体。

师:两点间的距离可以用哪个词语来表示呢?(间隔)

生活中你们还见过哪些间隔,能举些例子吗?

刚才在植树中,你们发现了几个间隔(数)呢?是怎么知道的?

学情预设:学生可能会说是数出来的,可能会说是算出来的……每一种方法教师都予以肯定。

设计意图:老师呈现解决问题常用的方法:遇到复杂问题想简单的,从简单问题入手去研究。让学生利用学具模拟实际种树去检验,学生兴趣比较大,做到人人动手实践,丰富了学生的感性材料,并自然过渡引出线段图,为学生顺利发现并总结规律打下了基础。

师:同学们在刚才栽树的过程中,还发现了什么?

设计意图:给学生一个思考的空间,使学生发现植树时要准备树苗的问题并不能简单地用除法来解决。

(4)感知规律

如果让你们来栽树,在这条20米的小路上,要使每棵树之间的距离相等,还可以每隔几米栽一棵树?

学情预设:学生会提出每隔1米,2米,4米,10米,20米栽一棵。

出示表格,根据学生的回答将间隔填上。

小组合作:选择一、两种间隔,用喜欢的方法找出间隔数和棵数,填入表格中。

总长

间隔(米)

间隔数(个)

棵数(棵)

20米

(两端都栽)

5米

4个

5棵

1米

2米

4米

10米

20米

填好表格后,小组派代表汇报结果。

学情预设:学生可以用画线段图、算一算、数一数等方法完成。

设计意图:学生自由选择方案,并选择用自己喜欢的方式来找出间隔数和棵数,体现教学方法的开放性。展示学生不同的探究方法,体现“不同的学生学习数学的水平可以不同”的教育思想。

谈论交流:两端都栽时,植树的棵数与间隔数之间有什么关系?

得出结论:两端都栽树时,棵数比间隔数多1。也可以说间隔数比棵数少1。

板书:(两端都栽)间隔数+1=棵数

质疑:为什么两端都栽时,棵数比间隔数多1?

配合学生的回答,课件展示

设计意图:启发学生透过现象发现规律,也就是在两端都栽时,棵数比间隔数多一。

(5)练习

老师有几个问题想请你们用刚才所学的规律以抢答的形式来帮忙解决。

两端都栽时,7棵树有几个间隔呢?9个间隔有几棵树?12棵树有几个间隔呢?20个间隔有几棵树?……

设计意图:全体学生一起抢答,知识得到了巩固,同时也活跃了课堂的气氛。

(6)验证

我们利用这个规律来算一算,两端都栽时,100米到底应该种多少棵树?看看前面哪些同学猜对了。

设计意图:学生经历了分析、思考、解决问题的全过程,同时利用所学的规律加以验证。从中得到解决问题的方法,丰富了学生的解题策略,体验到成功的喜悦。

三、应用规律

(1)任意一纵队的学生起立

师:谁能应用刚才所学的知识提几个数学问题?

学情预设:学生可能会提:有几个间隔?头尾两个同学相距多少米?每相邻两个同学间隔有多少米?

(2)学校小路一侧插上12面彩旗,两头各插一面,每两面彩旗之间相隔6米,这条小路长多少米?

(3)工人架设电线杆,每两根电线杆之间的电线长100米,从第1根到第9根之间要拉多长的电线?

(4)学校组织40名同学参加车鼓队排练,请你设计一下队形?可能会排成几排?

学情预设:1排、2排、4排、5排、8排……

师:如果老师想排成一排,每两个同学的间隔是2米,想想,这个车鼓队伍头尾相距多少米?

如果老师想排成两排呢?

(5)我们的城市建设正在火热进行中,市里决定在一条长20xx米的街道两侧安装节能路灯,(两端都要安装),每隔50米安一座,算算看一共要安装多少座路灯?

设计意图:应用知识解决孩子们身边的问题,解决学校的问题,解决社会公益问题,提高了学生解决生活实际问题的能力。充分体现了新课标“数学学习内容应当是现实的,有意义的,富有挑战性的”的理念。

四、全课总结

学完这节课,你有什么想对老师或者同学们说的呢?

五、课外思考

为了进一步美化我们的校园,学校准备沿着宣传廊一旁摆上漂亮的花。宣传廊全长约60米,如果每隔6米摆一盆花,你想怎么摆?一共需要购买多少盆花?

设计意图:把探究活动延伸到课外,为下一节课的教学做好铺垫。

设计思路:

《植树问题》是人教版小学数学实验教材四年级下册新增的一个内容,其目的是向学生渗透一些重要的数学思想方法。教材通过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

上课伊始,对学生们进行环境保护教育,让学生意识到植树和生活有紧密的联系,而且植树中还藏着有趣的数学问题,激发学生的求知欲。

导入新课后,让学生成为学习的主人,学生经历了猜猜,试试,画画,填填等多种学习形式,自主探究出规律。整个过程培养了学生的动手操作能力,自主探究能力,小组合作交流能力。学生自由选择方案,体现教学方法的开放性,在教师的引导下,学生很快地发现了规律,并构建起植树问题的数学模型,为下一节课的教学打下坚实的基础。

在练习巩固环节,让学生运用新获得的数学知识来解决生活中的实际问题,让学生意识到生活中处处有数学,数学源于生活,又用于生活,激发学生的学习热情。

本课设计的立足点在于学生的发展,把学生探索规律的过程作为课堂的中心点,把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。

植树问题教案【第二篇】

学情分析

由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于整体学生来说是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力,因此为了让学生能更好地理解本单元的教学内容,在教学过程中应对教材进行适当的整合,并充分利用原有的知识和生活经验,来组织学生开展各个环节的教学活动。

教学目标

1.认识不封闭曲线路上间隔排列中的简单规律。

2.会解决问题中“两端都栽”情形的植树的实际问题。

教学重难点

重点:间隔排列中的简单规律

难点:两端栽树棵数与间隔数之间的关系。

教学过程

一、口算:(白板出示)

48÷6=? 13×3+1=? 83+42+17=? 32÷8+1=? (13-1)÷2=

100÷5+1=? (73-1)÷8=? 12×4=? 1000÷10=? 35÷7+1=

二、谈话导入

师:同学们你们知道每年的植树节是几月几日吗?

生:3月12日

师:那你们植过树吗?

生:没有 有

师:那今天老师就来带领大家一起来研究数学上的 “植树问题”吧!

出示课题(ppt):植树问题

准备:

伸出左手 五指张开 每相邻两个手指之间有一个缝隙,这个缝隙也称做间隔。

5—4 也称做间隔数是4 ; 4-3 3 ;? 3—2 2 ;?? 2—1? 1 ;

?? 那大家植树时是不是这样植的?每相邻两棵树之间有一定的距离,也称做间距。

三、探究新知

下面让我们一起来研究,出示课件例题1

(1)理解题意

师:认真读题,你认为哪些词语最关键?

生:全长100米 ?? ? 一边

每隔五米 间隔 ?两端都要栽

问题:一共需要几棵树苗?棵数

(这些同学审题真仔细)

师:那什么叫做每隔五米?两端都要栽?

生:每相邻两棵树之间的间隔距离是5米?

小路的最开始和末尾各栽一棵。

师:同学们说的可真好,那请大家观看课件,跟着老师一起通过ppt再次深刻理解题意,认真看,小声跟着说……好!那你认为一共应该栽多少棵小树呢?

师:100米太长了,我们可以用简单的数来试试。20米(师把100改成20),师在黑板上画出线段图,让学生清楚看出需要5棵小树苗。师:怎样写算式呢?20÷5=4() 4+1=5()

(老师重点强调单位名称和答)

师:把20米换成30米、35米呢?(学生在练习本上计算,后同桌对答案)

师:那么大家来看黑板上,间隔数和棵树之间有什么联系?

生:棵数=间隔数+1? 多找几个同学回答

师:出示课件 一起读。

师生共同回头看例1,学生在练习本上计算。

师出示课件ppt例1的`计算过程

100÷5=20(个)

20+1=21(棵)

答:一共需要21棵小树苗。

(表扬—你真了不起,写的跟答案一模一样,点赞!)

四、巩固练习(ppt呈现)

1、5路公交车线路全长12千米,相邻两站之间的路程都是1千米,一共设有多少个车站?

2、把“1千米”改成“2千米”

3、在一条长20米的小路一侧,每隔4米放一盆植物(两端都放),一共需要多少盆植物?

4、两侧都放呢?

5、大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端都不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树

五、思考题

学校的大钟8时敲响8下,14秒敲完。11时敲响11下,敲完需要多长时间?

六、谈收获

通过今天的学习,老师很佩服你们的专注力,你们真了不起!那么你的收获是什么呢?

(师生共同本课内容,下课。)

植树问题教案【第三篇】

教学过程:

教学内容:

教学目标:

1、通过猜测、试验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律。

2、引导学生构建数学模型,解决实际生活中的有关问题。

3、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

教学重点:发现并理解两端都栽的植树问题中间隔数与棵树的规律。

教学难点:运用“植树问题”的解题思想解决生活中的实际问题。

教学准备:课件、白纸

教学过程:

一、情境出示,设疑激趣

教师:哪位同学知道我们国家设立的植树节是在哪一天?(3月12日)在这一天的植树活动中,遇到了这样一个问题。(课件出示问题)

例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

教师:你能利用所学的知识解决问题吗?(板书)你认为哪一个结果是正确的?

设计意图

直接出示例题的情境,通过学生的尝试解答,既是对教学起点的了解,又利用两种不同的结果设置疑问,激发了学生探求新知的热情。

二、经历过程,感受方法

教师:可以用怎样的方法进行检验呢?实践是检验真理的唯一标准,虽然我们不能去户外植树,但是我们可以在草稿本上画一画。遇到了什么困难?

预设:100 m太长了,不太好画。(追问:那我们可以怎么办?)

学生:可以先用简单的数试一试。(课件出示)

设计意图

使学生经历分析思考的整个过程,感受“猜测──验证”的学习方法。在实际操作中发现问题有助于激发学生的思考,从而深刻地体会“从简单事例中发现规律,并利用此规律解决较复杂问题”的数学思想。

三、探索实践,建立模型

教师:先看看20 m的距离,在两端都栽的情况下可以栽几棵树。实物投影或课件出示:教师:说说你是怎么想的?预设:20÷5=4,20 m被平均分成4段,因为两端要栽,所以要栽5棵树。

教师:再画一画,25 m可以栽几棵树?(学生操作)谁来说说你的想法?

预设:25÷5=5,就是把25 m平均分成了5段,因为两端都要栽,所以要栽6棵树。还可以这样画:这里的蓝色线段表示什么?(间隔数)红色线段呢?(植树棵数)

(根据学生回答,教师在课件上输入数据)你发现了什么规律?

预设:棵数要比间隔数多1。(追问:可以用怎样的一个式子表示?)棵数=间隔数+1。教师:谁能说说为什么要“+1”?(因为两端都要栽,所以栽树的棵树比间隔数多1。)你能用发现的规律解决开头的问题吗?(指名回答,分析讲解)

教师:回顾这个问题的解答过程,说说你的想法。

归纳小结:在解决较复杂或数据较大的问题时,可以先从简单数据出发得出规律,然后将规律运用于复杂问题进行解决。

设计意图

“画示意图──抽象出线段图──不画图”的教学过程,体现了从具体到抽象、从特殊到一般的设计理念,也正是在这一进程中,通过积极有效的'教学活动,使学生建立起“一条线段两端都栽”这类植树问题的数学模型。

四、利用新知,解决问题

教师:根据刚才学到的知识,还可以解决许多生活中的问题。(课件出示问题)

1、在一条全长2 km的街道两旁安装路灯(两端也要安装),每隔50 m安一盏。一共要安装多少盏路灯?

教师:读完这个题目,你觉得有哪些地方需要特别引起注意?

预设1:单位不统一,要先进行转化再计算。

预设2:两旁。(追问:表示什么?)就是两边。你能通过画图的方法表示出“两旁”吗?在计算时该怎样体现?(先算出一边的路灯的数量,再乘以2。)

学生练习,指名回答。

2 km=20xx m(20xx÷50+1)×2=82(盏)

答:一共要安装82盏路灯。

教师:20xx÷50算的是什么?(间隔数)“+1”说明了什么?(两端都要安装)

2、马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?教师:仔细读题,认真思考,说说你对这个题目的理解。

引导得出:要求一共栽多少棵银杏树,实际就是求梧桐树的间隔数。由“棵数=间隔数+1”可得“间隔数=棵数—1”。

25—1=24(棵)

答:一共要栽24棵银杏树。

教师:可以用怎样的方法验证结果是否正确?(可以先用比较简单的例子,通过画线段图的方法进行验证)和这题有关的简单的例子,我们只要张开一只手。五个手指相当于题目中的?(梧桐树)每两个手指之间栽一棵(银杏树),可以栽几棵?你还有其他的方法吗?

设计意图

练习中的实际问题,相比例题有一些变化,对于学生的理解能力提出了更高的要求。第1题用画图的方法直观地表示出“两旁”,解决了算式中为什么要“×2”的问题;第2题先让学生思考,说说自己的理解,验证的环节既是对方法的回顾,又体现了数学的趣味性。

五、逆向思考,拓展新知

园林工人沿一条笔直的公路一侧植树,每隔6 m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

教师:读题并思考,要求“从第1棵到最后一棵的距离”就是求什么?(路长)跟例题相比,有什么不同?

预设:例题是知道了路长求栽树的棵数,这题是知道了栽树的棵数,求路线长度。教师追问:该怎样解答呢?试一试,并说说你的思路。

(36—1)×6=210(m)

答:从第1棵到最后一棵的距离是210 m。

教师:“36—1”算的是什么?(间隔数)再根据“间隔数×间隔距离=路长”计算。

设计意图

通过变式练习,加深学生对例题中发现的规律的理解。该题是植树问题数学模型的逆向应用,有了前一题“间隔数=棵数—1”的知识为基础,学生应该能比较容易地解决这一问题。对于学习有困难的同学,也可引导他们用画线段图的方法解答。

六、回顾思考,全课总结

教师:通过这一节的学习,你有什么收获?跟大家交流一下。

根据学生回答,强调:

1、解决两端都要栽的植树问题的数学模型:棵数=间隔数+1。

2、当遇到较为复杂的数学问题时,可以先从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。

板书设计

植树问题(两端要栽)总长÷间距=间隔数间隔数+1=棵数100÷25+1=21(棵)

植树问题教案【第四篇】

教学内容:

《义务教育课程标准实验教科书数学(四年级下册)》第P117- P118

教学目标:

知识技能目标:

1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的交流习惯。

情感目标:

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

教学重点:理解“植树问题(两端要种)”的特征,应用规律解决问题

教学难点:理解“间距数+1=棵数,棵数-1=间距数”

教学准备:课件

教学过程:

一、创设原型

1、教学“间隔”的含义

师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

2、举例生活中的“间隔”

师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

3、根据生活实景信息回答问题。

(1)公园的一侧一些树,数了数有6个间隔,一共栽了几棵树呢?(7棵)

(2)庄老师家在6楼,从1楼到6楼要爬几层楼?(5层)

(3)河边的护栏有5根铁链,需要几根柱子?(6根)

4、引入课题

师:同学们刚才我们了解的5根手指间有几个间隔;爬楼梯要几层;铁链需要几根柱子等,数学中统称为植树问题。(板书)

二、构建模型

1、用图象语言描述“植树棵数与间隔数”之间的关系。

师:(右手)我把5根手指看作5棵树,他有4个间隔。那么,6棵树、7棵树之间有几个间隔呢?你能用一个图来展示说明吗?(生作图,展示)

2、构建植树问题的数学模型

(1)我们一起来看一下这几位同学画的图,你能说说你是怎么画的吗?

(2)比较一下这几种作图方法,你觉得哪种方法简便,看起来清楚?(是啊,用线段图的方法最简便,因此它也是我们最常用的。)

(3)通过画图,我们发现这条路的两端都栽了树,这就是我们今天研究的植树问题的一种类型。(板书:两端都栽)

(4)在线段图上,我们用点表示栽的'树,几个点就是几棵树。通过画图,我们知道6棵树之间有5个间隔,7棵树之间有6个间隔,那么你能想象一下10棵树之间、50棵树之间、100棵树之间有几个间隔吗?你发现了什么规律?

植树棵数 间隔数

6

7

(板书:棵数-1=间隔数 间隔数+1=棵数)

师:今天表现真不错,一下子就能找到这其中的规律,老师真为你们感到高兴!

三、利用模型解决问题

1、教学例1

师:现在老师要考考你们了,谁敢接受检查?既然大家都想来,那么我们一起来。

课件出示:同学们要在全长50米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

(1) 谁能大声清楚朗读这个题目?

(2) 从中你了解了哪些数学信息?(小路长50米,两端都要栽、每隔5米。)

(3) 两端都要栽是什么意思?每隔5米是什么意思?哪两棵树之间相隔5米?

(3)这题也可以用画线段图的方法来解答,你能试着画线段图吗?

(4) 展示学生线段图,你能说说你是怎么画的吗?

(5) 为了看起来更清楚,老师把这张图移到了电脑上,你能猜猜许老师画图的意思吗?从这张图上你可以了解些什么信息?谁也知道了也想来说给大家听一听的?

(6)线段图里其实就反映着题目的意思,你能看着线段图用算式来解答吗?学生独立列算式。

(7)汇报:说说你的想法。

① 出示学生各种答案,板书在黑板上。

② 对于这几种方法,你们有什么看法吗?(生:我认为……)

③ 擦去错误答案,剩下正确答案:100÷5=10(个) 10+1=11(棵)

④师追问:大家都认为这种方法是正确的,那么谁能告诉我算式中的“50”表示什么吗?“5”表示什么?“100÷5=10(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“10+1=11(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。

⑤谁能够完整地说一说这个算式的意思?有谁听明白了,也想来说一说的?既然大家都想来说,那么我们就同桌互相说一说。

2、试一试

师:如果老师把题目改一改,看看谁还会?

课件出示:“六一”儿童节快到了,学校决定在全长120米的求索大道一边插上彩旗。每隔8米插一面旗(两端都插),一共需要准备多少面彩旗?

(1)

(1) 生轻轻读题,说说从这个题目中你了解了些什么信息?

(2) 和刚才这题比较,你想说什么?

(3) 学生独立列式并汇报。

3、巩固新知

师:恭喜大家,顺利通过检查!你们还想接受新一轮的挑战吗?

课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

(1)生独立阅题,说说这个题目中又有哪些数学信息呢?

(2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

(3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?

(4)学生独立解答并汇报:

(5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个) 35×6=210(米)

(6) 擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)

相关推荐

热门文档

20 887257