首页 > 学习资料 > 教案大全 >

不等式的性质(优质4篇)

网友发表时间 464499

【路引】由阿拉题库网美丽的网友为您整理分享的“不等式的性质(优质4篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

不等式的性质【第一篇】

不等式的性质(3)

教学目标 1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;

2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;

3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。

教学难点 熟练并准确地解一元一次不等式。

知识重点 熟练并准确地解一元一次不等式。

教学过程(师生活动) 设计理念

提出问题 某地庆典活动需燃放某种礼花弹。为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方。已知导火索的燃烧速度为 m/s,人离开的速度是4 m/s,导火索的长x(m)应满足怎样的关系式?

你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程。 以学生身边的事例为背景,突出不等式与现实的联系,这个问题为契机引入新课,可以激发学生的学习兴趣。

探究新知 1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法。教师规范地板书解的过程。

2、例题。

解下列不等式,并在数轴上表示解集:

(1) x ≤ 50    (2)-4x < 3

(3) 7-3x≤10    (4)2x-3 < 3x+1

分组活动。先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况。教师作总结讲评并示范解题格式。

3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同?

让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。 不同层次的学生经过尝试会有不同的收获。一些学生能独

立解决;还有一些学生虽不能解答,但在老师的引导下也能受到启发,这比单纯的教师讲解更能调动学习的积极性。另外,由学生自己来纠错,可培养他们的批

判性思维和语言表达能力。

比较不等式与解方程的异同中渗透着类比思想。

巩固新知 1、解下列不等式,并在数轴上表示解集:

(1)       (2)-8x < 10

2、用不等式表示下列语句并写出解集:

(1)x的3倍大于或等于1;  (2)y的 的差不大于-2.

解决问题 测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面 m的地方作为测量部位。某树栽种时的树围为5 cm,以后树围每年增加约3 cm.这棵树至少生一长多少年,其树围才能超过 m? 让学生在解决问题的过程中深刻感悟数学来源于实践,又服务于实践,以培养他们的数学应用意识。

总结归纳 围绕以下几个问题:

1、这节课的主要内容是什么?

2、通过学习,我取得了哪些收获?

3、还有哪些问题需要注意?

让学生自己归纳,教师仅做必要的补充和点拨。 让学生自己归纳小结,给学生创造自我评价和自我表现的机会,以达到激发兴趣、巩固知识的目的。

小结与作业

布置作业 1、必做题:教科书第134~135页习题第6题(3)(4)第10题。

2、选做题:教科书第135页习题9、12题。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

通过创设与学生实际生活密切联系的向题情境,并由学生根据自己掌握的知识与经验列出不等式,探究它的解法,可以激发学生的学习动力,唤起他们的求知欲望,促使学生动脑、动手、动口,积极参与教学的整个过程,在教师的指导下,主动地、生动活泼地、富有个性地学习。

新课程理念要求教师向学生提供充分的从事数学活动的机会。本课教学过程中贯穿了“尝试—引导—示范—归纳—练习—点评”等一系列环节,旨在改变学生的学习方式,将被动的、接受式的学习方式转变为动手实践、自主探索和合作交流等方式。教师的组织者、引导者与合作者的角色在这节课中得到了充分的演绎。 教师要尊重学生的个体差异,满足多样化学习的需求。对学习确实有困难的学生,要及时给予关心和帮助,鼓励他们主动参与数学学习活动,尝试着用自己的方式去解决问题,勇于发表自己的观点。除了演好组织者、引导者的角色外,教师还应争当“伯乐”和“雷锋”,多给学生以赞许、鼓励、关爱和帮助,让他们在积极愉悦的氛围中努力学习。

不等式的性质【第二篇】

探究活动

能得到什么结论

题目 已知 且 ,你能够推出什么结论?

分析与解:由条件推出结论,我们可以考虑把已知条件的变量范围扩大,对已知变量作运算,运用不等式的性质,或者跳出不等式去考虑一般的数学表达式。

思路一:改变 的范围,可得:

1. 且 ;

2. 且 ;

思路二:由已知变量作运算,可得:

3. 且 ;

4. 且 ;

5. 且 ;

6. 且 ;

7. 且 ;

思路三:考虑含有 的数学表达式具有的性质,可得:

8. (其中 为实常数)是三次方程;

9. (其中 为常数)的图象不可能表示直线。

说明 从已知信息能够推出什么结论?这是我们经常需要思考的问题,这里给出的都是必要非充分条件,读者可以考虑是否能够写出充要条件;另外,运用推出关系的传递性,在推出结论的基础上进一步进行推理,还可得出很多结果,请读者考虑。

探究关系式是否成立的问题

题目  当 成立时,关系式 是否成立?若成立,加以证明;若不成立,说明理由。

解:因为 ,所以 ,所以 ,

所以 ,

所以 或

所以 或

所以 或

所以 不可能成立。

说明:像本例这样的探索题,题目的结论是“两可”(即两种可能性)情形,而我们知道,说明结论不成立可像例1那样举一个反例就可以了。不过像本例的执果索因的分析,不仅说明结论不成立,而且得出 , 必须同时大于1或同时小于1的结论。

探讨增加什么条件使命题成立

例 适当增加条件,使下列命题各命题成立:

(1)若 ,则 ;

(2)若 ,则 ;

(3)若 , ,则 ;

(4)若 ,则

思路分析:本例为条件型开放题,需要依据不等式的性质,寻找使结论成立时所缺少的一个条件。

解:(1)

(2) 。当 时,

当 时,

(3)

(4)

引申发散 对命题(3),能否增加条件 ,或 , ,使其成立?请阐述你的理由。

不等式的性质【第三篇】

课    题:不等式的性质(1)

教学目的:

1 了解不等式的实际应用及不等式的重要地位和作用;

2 掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小。

教学重点:比较两实数大小。

教学难点:差值比较法:作差→变形→判断差值的符号 

授课类型:新授课

课时安排:1课时

教    具:多媒体、实物投影仪

教学过程:

一、引入:

人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的 研究不等关系,反映在数学上就是证明不等式与解不等式 实数的差的正负与实数的大小的比较有着密切关系,这种关系是本章内容的基础,也是证明不等式与解不等式的主要依据 因此,本节课我们有必要来研究探讨实数的运算性质与大小顺序之间的关系

生活中为什么糖水中加的糖越多越甜呢?

转化为数学问题:a克糖水中含有b克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?

分析:起初的糖水浓度为 ,加入m克糖 后的糖水浓度为 ,只要证 > 即可 怎么证呢?引人课题

二、讲解新课:

1.不等式的定义:用不等号连接两个解析式所得的式子,叫做不等式。

说明:(1)不等号的种类:>、<、≥(≮)、≤(≯)、≠.

(2)解析式是指:代数式和超越式(包括指数式、对数式和三角式等)

(3)不等式研究的范围是实数集r.

2.判断两个实数大小的充要条件

对于任意两个实数a、b,在a>b,a= b,a<b三种关系中有且仅有一种成立。判断两个实数大小的充要条件是:

由此可见,要比较两个实数的大小,只要考察它们的差的符号就可以了,这好比站在同一水平面上的两个人,只要看一下他们的差距,就可以判断他们的高矮了。

三、讲解范例:

例1比较(a+3)(a-5)与(a+2)(a-4)的大小

分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要) 并根据实数运算的符号法则来得出两个代数式的大小  把比较两个实数大小的问题转化为实数运算符号问题

本题知识点:整式乘法,去括号法则,合并同类项

解:由题意可知:

(a+3)(a-5)-(a+2)(a-4)

=(a2-2a-15)-(a2-2a-8)

=-7<0

∴(a+3)(a-5)<(a+2)(a-4)

例2已知x≠0,比较(x2+1)2与x4+x2+1的大小

分析:此题与例1基本类似,也属于两个代数式比较大小,但是其中的x有一定的限制,应该在对差值正负判断时引起注意,对于限制条件的应用经常被学生所忽略

本题知识点:乘法公式,去括号法则,合并同类项 

解:由题意可知:

(x2+1)2-(x4+x2+1)

=(x4+2x2+1)-(x4+x2+1)

=x4+2x2+1-x4-x2-1

=x2

∵x≠0  ∴x2>0

∴(x2+1)2-(x4+x2+1)>0

∴(x2+1)2>x4+x2+1

例2引伸:在例2中,如果没有x≠0这个条件,那么两式的大小关系如何?

在例2中,如果没有x≠0这个条件,那么意味着x可以全取实数,在解决问题时,应分x=0和x≠0两种情况进行讨论,即:

当x=0时,(x2+1)2=x4+x2+1

当x≠0时,(x2+1)2>x4+x2+1

此题意在培养学生分类讨论的数学思想,提醒学生在解决含字母代数式问题时,不要忘记代数式中字母的取值范围,一般情况下,取值范围是实数集的可以省略不写

得出结论:例1,例2是用作差比较法来比较两个实数的大小,其一般步骤是:作差--变形--判断符号 这样把两个数的大小问题转化为判断它们差的符号问题,至于差本身是多少,在此无关紧要 

例3已知a>b>0,m>0,试比较 与 的大小

解:

∵a>b>0,m>0,∴a-b>0,a+m>0

∴ ∴ >

从而揭示"糖水加糖甜更甜"的数学内涵

例4  比较a4-b4与4a3(a-b)的大小。

解: a4-b4 - 4a3(a-b)

=(a-b)(a+b)(a2+b2) -4a3(a-b)

= (a-b)(a3+ a2b+ab2+b3-4a3)

=(a-b)[(a2b-a3)+(ab3-a3)+(b3-a3)]

= - (a-b)2(3a3+2ab+b2)

=- (a-b)2  (当且仅当d=b时取等号)

∴a4-b4 4a3(a-b)

说明:"变形"是解题的关键,是最重一步 因式分解、配方、凑成若干个平方和等是"变形"的常用方法

例5  已知x>y,且y≠0,比较 与1的大小

解:

∵x>y,∴x-y>0

当y<0时, <0,即 <1

当y>0时, >0,即 >1

说明:变形的目的是为了判定符号,此题定号时,要根据字母取值范围,进行分类讨论

四、课堂练习:

1 在以下各题的横线处适当的不等号:

(1)( + )2     6+2 ;

(2)( - )2      ( -1)2;

(3)         ;

(4)当a>b>0时,log a        log b

答案:(1)<    (2)<    (3)<    (4)<

2 选择题

若a<0,-1<b<0,则有(    )

a a>ab>ab2     b ab2>ab>a    c ab>a>ab2    d ab>ab2>a

分析:利用作差比较法判断a,ab,ab2的大小即可

∵a<0,-1<b<0

∴ab>0,b-1<0,1-b>0,0<b2<1,1-b2>0

∴ab-a=a(b-1)>0 ab>a

ab-ab2=ab(1-b)>0 ab>ab2

a-ab2=a(1-b2)<0 a<ab2

故ab>ab2>a

答案:d

3 比较大小:

(1)(x+5)(x+7)与(x+6)2;

(2)log  与log

解:(1)(x+5)(x+7)-(x+6)2

=(x2+12x+35)-(x2+12x+36)

=-1<0

∴(x+5)(x+7)<(x+6)2

(2)解法一:(作差法)

log  -log =

= >0

∴log  >log

解法二:(中介法,常以"-1,0,1"作中介)

∵函数y=log x和y=log x在(0,+∞)上是减函数且 >

∴log  >log  =1,log  <log  =1

∴log  >log

4 如果x>0,比较( -1)2与( +1)2的大小

解:( -1)2-( +1)2

=[( -1)+( +1)][( -1)-( +1)

或[(x-2 +1)-(x+2 +1)]=-4

∵x>0  ∴ >0  ∴-4 <0

∴( -1)2<( +1)2

5 已知a≠0,比较(a2+ a+1)(a2-2 a+1)与(a2+a+1)·(a2-a+1)的大小

解:(a2+ a+1)(a2- a+1)-(a2+a+1)(a2-a+1)

=[(a2+1)2-( a)2]-[(a2+1)2-a2]=-a2

∵a≠0,∴a2>0  ∴-a2<0

故(a2+ a+1)(a2- a+1)<(a2+a+1)(a2-a+1)

五、小结 :本节学习了实数的运算性质与大小顺序之间的关系,并以此关系为依据,研究了如何比较两个实数的大小,其具体解题步骤可归纳为:

第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式

第二步:判断差值与零的大小关系,必要时须进行讨论

第三步:得出结论

在某些特殊情况下(如两数均为正,且作商后易于化简)还可考虑运用作商法比较大小 它与作差法的区别在于第二步,作商法是判断商值与1的大小关系

六、课后作业:

1.已知 ,比较 与 的大小

解:          =……=    ∴ ≥

2.比较2sin 与sin2 的大小(0< <2 )

解: 2sin  sin2 =2sin (1 cos )

当  (0, )时2sin (1 cos )≥0      2sin ≥sin2

当  ( ,2 )时2sin (1 cos )<0      2sin

3.设 且 , ,比较 与 的大小

解:      ∴

当 时 ≤ ;当 时 ≥

4.设 且 ,比较 与 的大小

解:

当 时    ∴ >

当 时    ∴ >

∴总有 >

七、板书设计(略)

八、课后记:

不等式的性质【第四篇】

不等式的性质(2)

教学目标 1、会根据“不等式性质1 "解简单的一元一次不等式,并能在数轴上表示其解集;

2、学会运用类比思想来解不等式,培养学生观察、分析和归纳的能力;

3、在积极参与数学活动的过程中,培养学生大胆猜想、勇于发言与合作交流的意识和实事求是的态度以及独立思考的习惯。

教学难点 根据“不等式性质1”正确地解一元一次不等式。

知识重点 根据“不等式性质1”正确地解一元一次不等式。

教学过程(师生活动) 设计理念

提出问题 小希就读的学校上午第一节课上课时间是8点开始。小希家距学校有2千米,而他的步行速度为每小时10千米。那么,小希上午几点从家里出发才能保证不迟到?

1、 若设小希2、 上午x点从家里出发才能不3、 迟到,4、 则x应满足怎样的关系式?

5、 你会解这个不6、 等式吗?请说说解的过程。

7、 你能把这个不8、 等式的解集在数轴上表示出来吗? 设里一个学生很熟悉的问题情境,能增强亲和力。经历由具体的实例建立不等式模型的过程,既可让学生感受不等式在实际生活中的应用,又非常自然地引入新课。

探究新知 1、 分组探讨:对上述三个问题,2、 你是如何考虑的?先独立思考然后组内交流,3、 作出记录,4、 最后各组派代表发主。

5、 在学生充分讨论的基础上,6、 师生共同7、 归纳得出:

(1) x应满足的关系是: ≤8

(2) 根据“不(3) 等式性质1”,在不(4) 等式的两边减去 ,(5) 得:x+ -(6)  ≤8-(7)  ,(8) 即x≤

(9) 这个不(10) 等式的解集在数轴上表示如下:

我们在表示 的点上画实心圆点,意思是取值范围包括这个数。

8、 例题

解下列不等式,并在数轴上表示解集:

(1)3x < 2x+1    (2)3-5x ≥ 4-6x

师生共同探讨后得出:上述求解过程相当于由3x<

2x+1,得3x-2x < 1;由3-5x≥4-6x,得-5x+6x≥4-3.这类似于解方程中的“移项”。可见,解不等式也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向。

最后由教师完整地板书解题过程。 培养学生主动参与、合作交流的意识,提主同学生的观察、分析、概括和抽象能力

强调“≤”与“<”在意义上和数轴表示上的区别。

类比解方程的方法,让学生初步感觉不等式与方程的关系。

巩固新知 1、解下列不等式,并在数轴上表示解集:

(1)x+5>-1(2)4x < 3x-5(3)8x-2 < 7x+3

2、用不等式表示下列语句并写出解集:

(1)x与3的和不小于6;

(2)y与1的差不大于0. 进一步巩固所学知识。

解决问题

1、某容器呈长方体形状,长5 cm,宽3 cm,高10 cm.容器内原有水的高度为3 cm。现准备继续向它注水。用v cm,示新注入水的体积,写出v的取值范围。

2、三角形任意两边之差与第三边有着怎样的大小关系? 提出这类实际问题,容易引起学生关注,激发他们参与学习

的热情。同时能体会到生活中蕴含着数学知识,反过来数学知识又帮助解决了生活中的许多实际问题,从而感受到新知识的用途。

总结归纳 师生共同归纳本节课所学内容:通过学习,我们学会了简单的一元一次不等式的解法。还明白了生活中的许多实际问题都是可以用不等式的知识去解决的。

小结与作业

布置作业 1、必做题:教科书第134页习题第6题(1)(2)

2、选做题:教科书第134页习题9、12题。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

本课从发生在学生身边的事情入手,创设问题情境,激发学生的学习兴趣和求知欲望。以问题为中心,使每一位学生都能积极思考,发散思维。让学生在“做数学”的过程中,亲身体验问题的发生、发现、发展与解决的全过程,采取自主探索、合作交流、深人研讨、步步为营的措施,为学生营造一个自主学习、主动发展的广阔空间,开辟探究、研讨、解决问题的广阔天地,使学生快快乐乐地成为学习的主人。

教学要以实际生活为背景。学生亲身经历过现实问题数学化的过程,就会获得富有生命力的数学知识,进一步认识数学,体验数学的价值。只有让学生真切地体会到生活中处处有数学,才有生活中处处用数学的可能,以此培养学生的应用意识。

教师在教学中要敢于打破教材格局。本课对教材作出全新的调整,注重以问题为线索来探究不等式的解法,再用所学知识去解决问题。放开手脚让每个学生从不同的角度、用不同的方法充分展现“自我”,真正构建起学生的课堂主人的地位,使他们的思维能力、情感态度和价值观念等各个方面都能迈上一个新的台阶。

相关推荐

热门文档

20 464499