首页 > 实用范文 > 书信 >

实用不等式的性质教学设计 不等式的性质精编5篇

网友发表时间 491930

【导读预览】此篇优秀范文“实用不等式的性质教学设计 不等式的性质精编5篇”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

不等式的性质教学设计篇1

本节课我采用从生活中假设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间、生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

课堂开始通过智力比拼引入课题。激发学生的学习兴趣以及积极性。通过简单的问题引导学生通过探究得出不等式的性质1.然后通过比较简单的不等式的变化,探究出不等式的性质2和3.在这一环节上,留给学生思考的时间有点少。

接下来的问题设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。

练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。同时使学生体会数学中的分类讨论思想。

不了高难度的题目,因此在设计教案时经过反复思考,终究没有选择类似的题目。终究是不放心学生。我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。

不等式的性质教学设计篇2

2.传递性;

3.加法单调性,即同向不等式可加性;

4.乘法单调性;

5.同向正值不等式可乘性;

6.正值不等式可乘方;

7.正值不等式可开方;

8.倒数法则。

如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。

不等式的性质教学设计篇3

本节课我采用从生活中假设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间、生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

课堂开始通过智力比拼引入课题。激发学生的学习兴趣以及积极性。通过简单的问题引导学生通过探究得出不等式的性质1.然后通过比较简单的不等式的变化,探究出不等式的性质2和3.在这一环节上,留给学生思考的时间有点少。

接下来的问题设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。

练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。同时使学生体会数学中的分类讨论思想。

不了高难度的题目,因此在设计教案时经过反复思考,终究没有选择类似的题目。终究是不放心学生。我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。

不等式的性质教学设计篇4

能得到什么结论

题目 已知 且 ,你能够推出什么结论?

分析与解:由条件推出结论,我们可以考虑把已知条件的变量范围扩大,对已知变量作运算,运用不等式的性质,或者跳出不等式去考虑一般的数学表达式。

思路一:改变 的范围,可得:

1. 且 ;

2. 且 ;

思路二:由已知变量作运算,可得:

3. 且 ;

4. 且 ;

5. 且 ;

6. 且 ;

7. 且 ;

思路三:考虑含有 的数学表达式具有的性质,可得:

8. (其中 为实常数)是三次方程;

9. (其中 为常数)的图象不可能表示直线。

探究关系式是否成立的问题

题目 当 成立时,关系式 是否成立?若成立,加以证实;若不成立,说明理由。

解:因为 ,所以 ,所以 ,

所以 ,

所以 或

所以 或

所以 或

所以 不可能成立。

说明:像本例这样的探索题,题目的结论是“两可”(即两种可能性)情形,而我们知道,说明结论不成立可像例1那样举一个反例就可以了。不过像本例的执果索因的分析,不仅说明结论不成立,而且得出 , 必须同时大于1或同时小于1的结论。

探讨增加什么条件使命题成立

例 适当增加条件,使下列命题各命题成立:

(1)若 ,则 ;

(2)若 ,则 ;

(3)若 , ,则 ;

(4)若 ,则

思路分析:本例为条件型开放题,需要依据不等式的性质,寻找使结论成立时所缺少的一个条件。

解:(1)

(2) 。当 时,

当 时,

(3)

(4)

引申发散对命题(3),能否增加条件 ,或 , ,使其成立?请阐述你的理由。

不等式的性质教学设计篇5

能得到什么结论

题目 已知 且 ,你能够推出什么结论?

分析与解:由条件推出结论,我们可以考虑把已知条件的变量范围扩大,对已知变量作运算,运用不等式的性质,或者跳出不等式去考虑一般的表达式。

思路一:改变 的范围,可得:

1. 且 ;

2. 且 ;

思路二:由已知变量作运算,可得:

3. 且 ;

4. 且 ;

5. 且 ;

6. 且 ;

7. 且 ;

8. (其中 为实常数)是三次方程;

9. (其中 为常数)的图象不可能表示直线。

探究关系式是否成立的问题

题目  当 成立时,关系式 是否成立?若成立,加以证明;若不成立,说明理由。

解:因为 ,所以 ,所以 ,

所以 ,

所以 或

所以 或

所以 或

所以 不可能成立。

说明:像本例这样的探索题,题目的结论是“两可”(即两种可能性)情形,而我们知道,说明结论不成立可像例1那样举一个反例就可以了。不过像本例的执果索因的分析,不仅说明结论不成立,而且得出 , 必须同时大于1或同时小于1的结论。

探讨增加什么条件使命题成立

例 适当增加条件,使下列命题各命题成立:

(1)若 ,则 ;

(2)若 ,则 ;

(3)若 , ,则 ;

(4)若 ,则

思路分析:本例为条件型开放题,需要依据不等式的性质,寻找使结论成立时所缺少的一个条件。

解:(1)

(2) 。当 时,

当 时,

(3)

(4)

引申发散 对命题(3),能否增加条件 ,或 , ,使其成立?请阐述你的理由。

相关推荐

热门文档

62 491930