数学二次根式教案(精选4篇)
【序言】由阿拉题库最美丽的网友为您整理分享的“数学二次根式教案(精选4篇)”教案资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
次根式【第一篇】
一、教学目标
1.掌握二次根式的混合运算。
2.掌握混合运算的应用。
3.通过二次根式的混合运算,培养学生的运算能力。
4.通过混合运算知识拓展,培养学生的探索精神
二、教学设计
小结、归纳、提高
三、重点、难点解决办法
1.教学重点:二次根式的混合运算。
2.教学难点:混合运算的应用。
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习小结,归纳整理,应用提高,以学生活动为主
七、教学过程
例题
例1 化简:
(1) ; (2) .
解:(1)
.
(2)
.
说明:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可变换相邻项的位置,如 ,结果为-1,继续运算易出现符号上的差错,而把 先变为 ,这样 则为1,继续运算可避免错误。
例2 解下列方程(组):
(1)
(2)
(3)
解:(1)
.
(2)①× ,得
③
②× ,得
④
③-④,得
把 代入①,得
解得 .
∴ 是原方程组的解。
(3)由②,得
③
①× ,得
④
③-④,得
把 代入①,得
.
∴ 是原方程组的解。
例3 已知 , ,求 的值。
解: .
.
, ,
∴ .
例4 已知 , ,求 的值。
解: , .
.
(二)随堂练习
1.教材中P206中8.
2.解不等式: .
解:
∴ .
3.已知 , ,求 的值。
解:3. ,或 .
.
∴
.
4.已知 , ,求: 的值。
解 4.
.
5.已知 ,求 的值。
解 5. .
.
6.不求方根的值比较 与 的大小。
解 6.∵
∴
∴
(三)总结、扩展
根据已知条件,求一个代数的值,要注意条件或代数式的化简,有时条件和要求的代数式都需要化简,当把条件化简后,代数式的化简要朝着条件化简的结果去化简。
(四)布置作业
教材中P207B组1、3和补充作业 .
补充作业 :
1.已知 ,求 的值。
2.已知 , ,求 的值。
(五)板书设计
标 题
1.例题…… 3.例题……
2.练习题 4.练习题
八、背景知识与课外阅读
二次根式的混和运算方法和顺序
1.方法 (1)应用二次根式乘法、除法和加减法运算法则。
(2)在实数范围内运算律仍适用。
(3)二次根式的乘法,与多项式的乘法相类似,遇运用多项式乘法公式时,也可以运用乘法公式。
2.顺序 先乘方、后乘除,最后加减,有括号的先算括号内的数。
次根式【第二篇】
教学建议
知识结构
.
重难点分析
本节的重点是 的化简。本章自始至终围绕着与计算进行,而 的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论。
本节的难点是正确理解与应用公式
.
这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误。
教法建议
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题
1) 、 、 各等于什么?
2) 、 、 各等于什么?
启发、引导学生猜想出
(2)从算术平方根的意义引入。
2.性质的巩固有两个方面需要注意:
(1)注意与性质 进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等。
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式。
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学过程
一、导入 新课
我们知道,式子 ( )表示非负数 的算术平方根。
问:式子 的意义是什么?被开方数中的 表示的是什么数?
答:式子 表示非负数 的算术平方根,即 ,且 ,从而 可以取任意实数。
二、新课
计算下列各题,并回答以下问题:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8)
1.各小题中被开方数的幂的底数都是什么数?
2.各小题的结果和相应的被开方数的幂的底数有什么关系?
3.用字母 表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论。
答:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8) .
1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.
2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数。
3.用字母 表示(1),(2),(3),(8)各题中被开方数的幂的底数,有
( ),
用字母 表示(4),(5),(6),(7)各题中被开方数的幂的底数,有
( ).
一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数。
问:请把上述讨论结论,用一个式子表示。(注意表示条件和结论)
答:
请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?
答:
填空:
1.当 _________时, ;
2.当 时, ,当 时, ;
3.若 ,则 ________;
4.当 时, .
答:
1.当 时, ;
2.当 时, ,
当 时, ;
3.若 ,则 ;
4.当 时, .
例1 化简 ( ).
分析:可以利用积的算术平方根的性质及二次根式的性质化简。
解 ,因为 ,所以 ,所以
.
指出:在化简和运算过程中,把 先写成 ,再根据已知条件中 的取值范围,确定其结果。
例2 化简 ( ).
分析:根据二次根式的性质,当 时, .
解 .
例3 化简:(1) ( ); (2) ( ).
分析:根据二次根式的性质,当 时, .
解 (1) .
(2) .
注意:(1)题中的被开方数 ,因为 ,所以 .
(2)题中的被开方数 ,因为 ,所以 .
这里 的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出。
例4 化简 .
分析:根据二次根式的性质,有
.
所以要比较 与3及1与 的大小以确定 及 的符号,然后再进行化简。
解 因为 , ,所以
, .
所以
.
三、课堂练习
1.求下列各式的值:
(1) ; (2) .
2.化简:
(1) ; (2) ;
(3) ( ); (4) ( ).
3.化简:
(1) ; (2) ;
(3) ; (4) ;
(5) ; (6) ( ).
答案:
1.(1); (2) .
2.(1) ; (2) ; (3) ; (4) .
3.(1)4; (2); (3); (4)-1; (5)4; (6)-1.
四、小结
1.二次根式 的意义是 ,所以 ,因此 ,其中 可以取任意实数。
2.化简形如 的二次根式,首先可把 写成 的形式,再根据已知条件中字母 的取值范围,确定其结果。
3.在化简中,注意运用题设中的隐含条件,如二次根式 有意义的条件是被开方 ,这是隐含条件。
五、作业
1.化简:
(1) ; (2) ;
(3) ( ); (4) ( );
(5) ; (6) ( , );
(7) ( ).
2.化简:
(1) ;
(2) ( );
(3) ( , ).
答案:
1.(1)-30; (2) ; (3) ;
(4) ; (5) ; (6) ; (7) .
2.(1)2; (2)0; (3) .
次根式教案【第三篇】
一、教学目标
1.了解二次根式的意义;
2.掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3.掌握二次根式的性质和,并能灵活应用;
4.通过二次根式的计算培养学生的逻辑思维能力;
5.通过二次根式性质和的介绍渗透对称性、规律性的数学美。
二、教学重点和难点
重点:(1)二次根的意义;(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法
启发式、讲练结合。
四、教学过程
(一)复习提问
1.什么叫平方根、算术平方根?
2.说出下列各式的意义,并计算:
通过练习使学生进一步理解平方根、算术平方根的概念。
观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,
表示的是算术平方根。
(二)引入新课
我们已遇到的这样的式子是我们这节课研究的内容,引出:
新课:二次根式
定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:
(1)式子只有在条件a0时才叫二次根式,是二次根式吗?呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的外在形态。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答
当字母取何值时,下列各式为二次根式:
(1)(2)(3)(4)
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式
解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时,是二次根式
(2)-3x0,x0,即x0时,是二次根式。
(3),且x0,x0,当x0时,是二次根式。
(4),即,故x-20且x-20,x2.当x2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
(1);(2);(3);(4)
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+30,得。
(2)由,得3a-10,解得。
(3)由于x取任何实数时都有|x|0,因此,|x|+,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.
(三)小结(引导学生做出本节课学习内容小结)
1.式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式。
2.式子中,被开方数(式)必须大于等于零。
(四)练习和作业
练习:
1.判断下列各式是否是二次根式
分析:(2)中,,是二次根式;(5)是二次根式。因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义。
是怎样的实数时,下列各式在实数范围内有意义?
五、作业
教材习题;A组1;B组1.
次根式教案【第四篇】
教学目标
1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;
2.熟练地进行二次根式的加、减、乘、除混合运算。
教学重点和难点
重点:含二次根式的式子的混合运算.
难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.
教学过程设计
一、复习
1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.
指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.
2.二次根式的乘法及除法的法则是什么?用式子表示出来.
指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,
计算结果要把分母有理化.
3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:
4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:
二、例题
例1x取什么值时,下列各式在实数范围内有意义:
分析:
(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.
x-2且x0.
解因为n2-90,9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a0和1-a>0.
解因为1-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.
问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?
分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.
注意:
所以在化简过程中,
例6
分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、课堂练习
1.选择题:
A.a2B.a2
C.a2D.a<2
A.x+2B.-x-2
C.-x+2D.x-2
A.2xB.2a
C.-2xD.-2a
2.填空题:
4.计算:
四、小结
1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.
2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.
3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.
4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.
五、作业
1.x是什么值时,下列各式在实数范围内有意义?
2.把下列各式化成最简二次根式: