首页 > 学习资料 > 教案大全 >

二次根式教案(精选4篇)

网友发表时间 2843240

【阅读指引】阿拉题库网友为您分享整理的“二次根式教案(精选4篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

《二次根式》教学教案【第一篇】

一、内容和内容解析

1、内容

二次根式的概念。

2、内容解析

本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。

教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。

本节课的教学重点是:了解二次根式的概念;

二、目标和目标解析

1、教学目标

(1)体会研究二次根式是实际的需要。

(2)了解二次根式的概念。

2、 教学目标解析

(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。

(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。

三、教学问题诊断分析

对于二次根式的定义,应侧重让学生理解 “ 的双重非负性,”即被开方数 ≥0是非负数, 的算术平方根 ≥0也是非负数。教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。

本节课的教学难点为:理解二次根式的双重非负性。

四、教学过程设计

1、创设情境,提出问题

问题1你能用带有根号的的式子填空吗?

(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______。

(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______。

(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____。

师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。

设计意图让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性。

问题2 上面得到的式子 , , 分别表示什么意义?它们有什么共同特征?

师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根。

设计意图为概括二次根式的概念作铺垫。

2、抽象概括,形成概念

问题3 你能用一个式子表示一个非负数的算术平方根吗?

师生活动:学生小组讨论,全班交流。教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号。

设计意图让学生体会由特殊到一般的过程,培养学生的概括能力。

追问:在二次根式的概念中,为什么要强调“a≥0”?

师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由。

设计意图进一步加深学生对二次根式被开方数必须是非负数的理解。

3、辨析概念,应用巩固

例1 当 时怎样的实数时, 在实数范围内有意义?

师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解。

例2 当 是怎样的实数时, 在实数范围内有意义? 呢?

师生活动:先让学生独立思考,再追问。

设计意图在辨析中,加深学生对二次根式被开方数为非负数的理解。

问题4 你能比较 与0的大小吗?

师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的理解,

设计意图通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力。

4、综合运用,巩固提高

练习1 完成教科书第3页的练习。

练习2 当x 是什么实数时,下列各式有意义。

(1) ;(2) ;(3) ;(4) 。

设计意图 辨析二次根式的概念,确定二次根式有意义的条件。

设计意图设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维。

5、总结反思

教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题。

(1)本节课你学到了哪一类新的式子?

(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?

(3)二次根式与算术平方根有什么关系?

师生活动:教师引导,学生小结。

设计意图:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法。

6。布置作业:

教科书习题16。1第1,3,5, 7,10题。

五、目标检测设计

1、下列各式中,一定是二次根式的是( )

A。 B。 C。 D。

设计意图考查对二次根式概念的了解,要特别注意被开方数为非负数。

2、 当 时,二次根式 无意义。

设计意图考查二次根式无意义的条件,即被开方数小于0,要注意审题。

3、当 时,二次根式 有最小值,其最小值是 。

设计意图本题主要考查二次根式被开方数是非负数的灵活运用。

4、对于 ,小红根据被开方数是非负数,得 出的取值范围是 ≥ 。小慧认为还应考虑分母不为0的情况。你认为小慧的想法正确吗?试求出 的取值范围。

设计意图考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑。

《二次根式》教学教案【第二篇】

教学目标

课标要求:学生要学会学习、自主学习,要为学生终生学习打下坚实的基础,根据教学大纲和新课标的要求,根据教材内容和学生的特点我确定了本节课的教学目标

1、了解二次根式的概念

2、了解二次根式的基本性质,经历观察、比较、总结二次根式的基本性质的过程,发展学生的归纳概括能力。

3、通过对二次根式的概念和性质的探究,提高数学探究能力和归纳表达能力。

4、学生经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣,并提高应用的意识。

教学重点:二次根式的概念和基本性质

教学难点:二次根式的基本性质的灵活运用

教法和学法

教学活动的本质是一种合作,一种交流。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者,本节课主要采用自主学习,合作探究,引领提升的方式展开教学。依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,,拓展学生探索的空间,体现由具体到抽象的认识过程。为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到将二次根式化成最简二次根式等,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。

教学过程

活动一:根据学生已有知识探究二次根式的概念

(1)探究二次根式概念 由四个实际问题(三个几何问题,一个物理问题)入手,设置问题情境,让学生感受到研究二次根式来源于生活又服务于生活。 思考:用带有根号的式子填空,看看写出的结果有什么特点? (1)要做一个两条直角边的长分别为7cm和4cm的三角尺,斜边的长应为 cm

(2)面积为S的正方形的边长为

(3)要修建一个面积为6。28m2的圆形喷水池,它的半径为m(∏取3。14)

(4)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t2。如果用含有h的式子表示t,则t= 学生发现所填结果都表示一个数的算术平方根,教师引导学生用一个式子表示这些有共同特点的式子。学生表示为,此时教师启发学生回忆已学平方根的性质让学生总结出a这一条件。在此基础上总结出二次根式的概念。

例题评析 例1:哪些为二次根式? 练习:x取何值时下列各式有意义,通过4小题的训练,让学生体会二次根式概念的初步应用。加深对二次根式定义的理解,并注重新旧知识间的联系,用转化的思想解决问题,总结出解题规律:求未知数的取值范围即转化为①被开方数大于等于0②分母不为0列不等式或不等式组解决问题。

活动二:探究二次根式的性质1探究(a)与0的关系 学生分类讨论探究出:(a)是一个非负数,此时归纳出二次根式的第一个性质:双重非负性。培养学生的分类讨论和概括能力。例2:,则变式:,

活动三:探究二次根式的性质2 探究()2=a(a)由课本具体的正数和零入手来研究二次根式的第二个性质,首先让学生通过探究活动感受这条结论,然后再从算术平方根的意义出发,结合具体例子对这条结论进行分析,引导学生由具体到抽象,得出一般的结论,并发现开平方运算与平方运算的关系,培养学生由特殊到一般的思维方式,提高归纳、总结的能力。前两题学生口述教师板书,后面的两题由学生板演引导学生分析(2)(4)实质是积的乘方和分式的乘方 拓展:反之(a)如 为后面的化最简二次根式(简单的分母有理化)做好铺垫。 例4:在实数范围内分解因式

活动四:探究二次根式的性质3 3。探究 在活动三的基础上出示课本第4页的探究: 引导学生比较活动三与活动四探究中两组题目的不同之处,活动三中的题目是对非负数先进行开平方运算,再进行平方运算;而活动四中的题目正好相反,是先进行平方运算,再进行开平方运算。再次由特殊到一般的让学生归纳出二次根式的又一个性质。培养学生观察、对比的能力和意识。 此时引导学生谈一谈对()2和的联系和区别 相同点:①都有平方和开平方运算 ②运算结果都是非负数 ③仅当a时,()2= 不同点:①从形式和运算顺序看:()2先开方后平方,先平方后开方 ②从a的取值范围看:()2(a),(a为任意数) ③从运算结果看:()2=a(a),(a为任意数

次根式教案【第三篇】

教学目标

1.使学生进一步理解二次根式的意义及基本性质,并能熟练 地化简含二次根式的式子;

2.熟练地进行二次根式的加、减、乘、除混合运算.

教学重点和难点

重点:含二次根式的式子的混合运算.

难点:综合运用二次根式的 性质及运算法则化简和计算含二次根式的式子.

教学过程设计

一、复习

1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各 式成立的条件.

指出:二次根式的这些基本性质都是在一定条件 下才成立的,主要应用于化简二次根式.

2.二次根式 的乘法及除法的法则是什么?用式子表示出来.

指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,

计算结果要把分母有理化.

3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:

4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:

二、例题

例1 x取什么值时,下列各式在实数范围内有意义:

分析:

(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;

(3)题是两个二次根式的和, x的取值必须使两个二次根式都有意义;

(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.

x-2且x0.

解因为n2-90, 9-n20,且n-30,所以n2=9且n3,所以

例3

分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3 -a0和1-a>0.

解 因为1-a>0,3-a0,所以

a<1,|a-2|=2-a.

(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.

问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?

分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.

注意:

所以在化简过程中,

例6

分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.

a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

三、课堂练习

1.选择题:

A.a2B.a2

C.a2D.a<2

A .x+2 B.-x-2

C.-x+2D.x-2

A.2x B.2a

C.-2x D.-2a

2.填空题:

4.计算:

四、小结

1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.

2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.

3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.

4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.

五、作业

1.x是什么值时,下列各式在实数范围内有意义?

2.把下列各式化成最简二次根式:

《二次根式》教学教案【第四篇】

一、说教材的地位和作用

1、内容:

二次根式的加减,利用二次根式化简的数学思想解应用题,含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用。

2、本节在教材中的地位与作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的`基础之上继续学习的,它也是今后学习其他数学知识的基础

二、说教学目标、重点、难点:

1、教学目标:

(1) 知识与技能:

1、含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用。

2、复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算。

理解和掌握二次根式加减的方法。

3、运用二次根式、化简解应用题。

4、通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题。

(2) 数学思考:

先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解。再总结经验,用它来指导根式的计算和化简

(3)解决问题:先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。

(3) 情感态度与价值观:通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。

2、教学重点、难点:二次根式化简为最简根式。二次根式的乘除、乘方等运算规律;

三、说如何突出重点、突破难点:

难点关键:会判定是否是最简二次根式,讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点。由整式运算知识迁移到含二次根式的运算

为了突破难点,教学中我注意:

1、潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。

2、培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神。

四、学情分析:二 次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础

五、说教学教学策略和学法

(一) 教法分析

根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。教学方法是学生分组讨论,合作探究、问题教学法,尽量做到问题让学生提,答案让学生想,过程让学生写,让学生自己归纳总结。让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:

1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。

2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。

(二) 学法分析

使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。

(三) 教学手段

采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。

六、说教学过程的设计:

本课共分为五个环节:

(一)、复习引入新课:

利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。

(二)、探索新知:

本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。

(三)、巩固练习:

在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。

(四)、总结反思:

在此环节中,我让学生谈收获和体会。使学生对本节课有一个全面的回顾与思考,从中抓住本节课的主旨与重点,即充分调动学生的积极性,从而达到培养学生归纳概括能力和语言表达能力。

(五)、布置作业:

拓展升华:在此部分中分为必做题:教科书上的题。选做题:(思考题)来自练习册。必做题面向全体学生,巩固重点,达标训练。选做题使不同的学生有不同的发展。这样做既达到了面向全体学生,又做到了因材施教的目的。

相关推荐

热门文档

20 2843240