数学四年级《乘法结合律》教案4篇
【路引】由阿拉题库网美丽的网友为您整理分享的“数学四年级《乘法结合律》教案4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
《乘法结合律》教学设计1
教学目标
1、使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。
2、使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。
3、使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。
教学过程
一、复习旧知、导入新课
1、出示:
你能在下列的 内填上合适的数吗?
28+320=320+ ;
(27+138)+62=27+( + );
35+ = +35。
提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?
2、出示:
在下列○内填上合适的运算符号。
4○10=10○4 (2○3)○5=2○(3○5)。
谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?
3、导入新课。
谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?
二、举例验证探索规律
(一)探索乘法交换律。
1、情景中感知乘法交换律。
出示例题。(略)
谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?
学生列式:3x5=15(人)或5x3=15(人)。
提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3x5,也可以列式5x3。所以,这两道算式可以用什么符号联结?
板书:3x5=5x3。
说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。
2、举例验证。
谈话:我们知道3x5=5x3,你能再写出一些这样的等式吗?
学生举例。
引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?
学生交流,教师选择一些等式板书。
电脑验证大数相乘的结果。
谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。
3、总结规律。
讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)
板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。
提示:你能像加法交换律一样用字母来表示乘法的交换律吗?
板书:axb=bxa。
提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?
4、回忆乘法交换律在过去学习中的运用。
谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)
(二)探索乘法结合律。
1、初步感知。
谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。
出示例题。(略)
谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?
组织学生交流。选择列为(5x3)x4和5x(3x4)的同学板演。
2、引导比较。
提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)
提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)
板书:(5x3)x4=5x(3x4)。
3、举例验证。
谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。
组织交流,教师有选择地板书一些等式。
4、总结规律。
讨论:
(1)你发现等号两边的算式中什么不变,什么变了?
(2)你能从这些算式中发现什么规律?
师生共同归纳乘法结合律。
板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。
谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?
板书:(axb)xc=ax(bxc)。
三、尝试运用理解规律
1、做“想想做做”第1题。(略)
2、尝试简便运算。
谈话:根据我们学习加法运算律的经验,想一想,学习乘法交换律和结合律,对我们的学习会有什么帮助呢?现在就让我们用学到的乘法运算律来进行简便运算吧!
出示第62页的“试一试”,学生尝试简便运算。
指名学生板演。
评讲:你能说出计算时运用了乘法的什么运算律吗。
小结。(略)
四、巩固练习拓展提高
1、做“想做做做”第2题。
观察:你发现每一组题的上、下两道算式有什么联系?
谈话:每组的两道题,你可以任选一道题进行计算,看谁既会选又会算!
提问:你能说出算得又对又快的理由吗?
2、做“想想做做”第3题。
谈话:你运用乘法的运算律使计算简便吗?比一比谁算得又对又快!
组织交流。
3、用简便方法计算。
25x6x4x15 25x125x32
学生练习后,组织交流。
五、引发联想,鼓励探究
谈话:同学们,今天我们通过猜想、举例验证的方法研究了乘法的交换律和结合律,既然加法和乘法都有交换律和结合律,那你有没有想过减法和除法会有什么运算规律呢?你可以选择下面的一组或几组算式先计算,然后再观察、比较,看你能不能有新的猜想?你有办法验证你的猜想吗?
127-53-27 218-69-31
127-27-53 218-(69+31)
72÷3÷8 54÷3÷2
72÷8÷3 54÷(3x2)
上面内容就是差异网为您整理出来的4篇《数学四年级《乘法结合律》教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在差异网。
《乘法结合律》教案2
(a×b)×c= a×(b×c) (a、b、c为任意数)乘法结合律是乘法运算的一种运算定律。
定义:三个数相乘,先把前两个数相乘,或先把
后两个数相乘,积不变。
《乘法结合律》教学设计3
教学内容
西师版四年级下册数学教材第17~18页例1~2,练习四第1题。
教学目标
1.经历在计算中探索发现乘法交换律、结合律的过程。
2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
教学重难点
在具体情景中探索发现乘法交换律、乘法结合律。
教学过程
一、复习旧知
1.以前学过的加法运算律有哪些?
加法交换律和加法结合律(学生回答)
2、说一说,下面的等式用了什么运算律?
80+a=a+80()20+30+40=20+(30+40)()
3、通过预习,你知道下面的等式用了什么运算律吗?
2×3=3×2()(2×3)×4=2×(3×4)()
引出课题:乘法运算律。
二、新课讲授
1、讲解
2×3=3×2
观察并思考:
(1)等号左边的算式和右边的算式有什么联系?
(2)从上面的观察与分析中,你能发现什么规律?
学生发现:两个因数交换位置,积不变。
师引导学生得出乘法交换律。
教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)
教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)
随堂练习:计算下面各题,用交换因数位置的方法进行验算。
34×16 26×37
学生独立做,请两名学生上台板演。
2讲解
(2×3)×4=2×(3×4)
观察并思考:
(1)等号左边的算式和右边的算式有什么联系?
(2)从上面的观察与分析中,你能发现什么规律?
学生发现:每个算式只是改变了运算顺序,每排左、右两个算式计算结果相等,
三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。
教师:谁知道这个规律叫什么?
教师板书:乘法结合律。
教师:如果用a、b、c表示3个数,可以怎样表示这个规律?
教师板书:(a×b)×c=a×(b×c)。
教师:这个规律就叫乘法结合律。
小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
三、课堂活动
1.练习四第1题:学生独立完成,全班交流,说出依据。
2.连线。
(学生独立完成)
23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)
四、课堂小结
今天这节课你都有哪些收获?还有什么问题?
五、作业
练习四第1、2题。
乘法结合律教案、练习、活动单4
乘法结合律教案、练习、活动单
乘法结合律 教学内容: 教材第34页例2及“做一做” 教学目标: 1.使学生理解和掌握乘法结合律。 2.能够应用乘法交换律和乘法结合律进行简便运算。 3.培养学生的逻辑思维能力。 教学重点: 1.理解并掌握乘法结合律。 2.运用乘法结合律进行简便运算。 教学难点: 乘法结合律的推导。 教具学具准备: 题卡(或小黑板) 教学过程: 一、创设情境,生成问题 1.口算练习2×5= 4×25= 8×125= 20×50= 40×25= 80×125= 2.填空练习17×13=( )×13 29×36=36×( ) 25×( )=23×25 4×13×25=4×( )×13 3.抢答: 12+36+64= 25+50+75= 25+36+75= 88+36+12= 44+56+23= 18+96+4= 4.师:前面我们共同探索与发现了加法交换律、加法结合律、乘法交换律。这些运算定律能使我们的计算变得快捷、简便。今天,老师将带领大家再次走进探索与发现的旅程,本节课我们要探索的新的运算定律是:乘法结合律(板书课题) 二、探索交流,解决问题 1.自主探究 (出示主题图及例2) 师:要求一共要浇多少桶水需要哪些数学信息? 生:一共25个小组;每组要种5棵树;每棵树要浇2桶水。 师:请同学们试着用不同的方法解答这个问题。 (学生独立思考,尝试解答,教师巡视,了解学生的学习情况,并及时指导。) 2.互动交流 师:同学们解答的怎么样了,请把你的解答方法在小组内交流一下。 (学生互动交流,在小组内展示自己的描述方法,小组内互相补充,初步形成小组意见) (教师巡视,参与学生讨论) 3.组织全班交流 (1)教师组织各小组推举代表汇报各组的表述方法,重点自己的解题思路,先算什么,再算什么,结果怎样。教师相机板书。 方法一:先求一共种多少棵树,再求一共浇多少桶水。 (25×5)×2 = 125×2 = 250(桶) 方法二:先求一个小组浇多少桶水,再求25个小组共浇多少桶水。 25×(5×2) = 25×10 = 250(桶) (2)比较上面两个算式,想一想这两个算式有什么相同点和不同点。 由两种算法的结果相同,可以看出两个算式有什么关系? 这种关系可以怎样表示?(指名回答,教师板书如下:) (25×5)×2=25×(5×2) (3)谁能用自己的话说说这两个算式的关系? (可多指出几名学生回答,初步感知乘法结合律。) 4.共同优化,形成结论 师:从上面两个算式我们可以看出,三个数相乘,总是先算前面的两个,所得的积再与第三个数相乘,现在我们先算后两个数相乘,所得积再与第一个数相乘,而它们的计算结果是一样的,我们发现的这个问题是不是乘法中的一个规律呢?咱们来共同验证一下好吗?看一看这个规律对其他的算式是不是也适用呢?请同学们列举一些这样的算式,看看它们的结果是不是相等。 ① 学生独立列式验证。 ② 指几名学生展示自己的验证结果。(相机板书三个算式) ③ 小结:从刚才大家列举的。算式来看,每一组的计算结果都是相同的。两个算式结果相同,我们可以用等号把它们连接在一起。观察黑板上的这些算式,谁来说一说我们发现的到底是一个什么样的规律呢? (三个数相乘,先把前两个数相乘,再乘第三个数,或者先把后两个数相乘,再乘第一个,他们的积不变。)(板书或卡片出示,齐读) 5.抽象概括 师:如果用字母a、b、c分别表示3个数,怎样用字母表示乘法结合律呢? (多指几名学生回答,形成结论 ) (a×b)×c= a×(b×c) 三、巩固应用,内化提高 师:我们现在发现了乘法结合律,也知道了它非常有用。那我们能不能用它来为我们的学习服务呢?我们共同到实践练习中去体会吧。 1.你能说一说,如何运用乘法结合律使下面的计算简便吗? 42×125×8 38×25×4 25×38×4 125×42×8 (看看后两个算式与前两个算式有什么不同的地方。在应用运算定律方面有什么不同? 前两个算式没有调换因数的位置,直接使用乘法结合律,后两个算式先运用了乘法交换律,将因数调换了位置,然后再用乘法结合律使计算简便。) 2.说一说,下面算式分别运用了什么运算定律。 72+48=48+72 ( ) A×B=B×A ( ) a+(20+9)=(a+20)+9 ( ) (△×○)×b=△×(○×b) ( ) 3.用合适的方法计算下面各题。 25×17×4 13×17×19 * 25×12 (小黑板或题卡出示,学生在练习本上计算)(第一题先交换因数的位置再用乘法结合律,第二题不能简算,第三题要经过变化后才能进行简便运算) 4.教材第35页“做一做”第2题。 5、写出几个使用乘法交换律的乘法算式。 5.写出几个使用乘法结合律的乘法算式。 四、回顾整理,反思提升 师:通过这节课的学习你有哪些新的收获?(完善板书) 五、课堂作业: 六、板书设计: 乘法结合律 (25×5)×2 25×(5×2) (展示学生验证算式) = 125×2 = 25×10 = 250(桶) = 250(桶) (a × b)×c = a ×(b×c) 三个数相乘,先把前两个数相乘,再乘第三个数,或者先把后两个数相乘,再乘第一个,他们的积不变。 乘法运算定律练习1.口算。 (1)25×8 (2)4×9×25 (3)26×102 (4)55×8+45×8 (5)125×88 (6)72×160×0 2.根据运算定律,在□里填上适当的数。 (1)64×75×32=(□×□)×32 (2)(70×25)×□=70×(□×8) (3)(52+35)×8=52×□+□×8 (4)(17+□)×10=□×10+13×□ (5)76×8+24×8=(□+□)×8 3.判断题,对的画“√”,错的画“×”。 (1)14×9+9×16=(14+16)×9 ( ) (2)(37+1)×20=37×20+20 ( ) (3)45×99+45=45×100+1 ( ) (4)(43+45)×2=43×(45×2) ( ) (5)(14×25)×4×3=14×4+25×3 ( ) 4.用简便方法计算下面各题。 (1)104×25 (2)125×16 (3)48×99+48 (4)78×125×8 (5)50×25×2×4 (6)125×(80+8) 5.应用题。 (1)一箱苹果重35千克,一箱桔子重30千克,商店购进苹果、桔子各10箱,购进苹果、桔子共多少千克?(用两种方法计算) (2)一个养鸡厂共有5排鸡舍,每排鸡舍有80个鸡笼,平均每个鸡笼养鸡50只,这个养鸡厂一共养鸡多少只? (3)张师傅每小时做零件23个,小王每小时做零件31个,3小时后张师傅比小王少做多少个零件? 6.想一想问□里该填什么数? (1)a×99+a=□×(99+□) (2)下面算式里的□表示同一个数。 3×□+2×□=□ 乘法交换律和结合律活动单 姓名______ 活动一:运用乘法的交换律或结合律,在下面的横线上填上恰当的数。 78×85×17=78×(_____×______) 81×(43×32)=(_____ ×______)×32 不计算在□里填上 “〉”、“〈”或“=” 1.73×54□54×73 2.(75×76)×74□75×(76×74) 3.87×53□87×52 4.80×90□8×(10×90) 活动二:用简便方法计算下面各题 973×5×2 125×897×8 2×125×8×5 195×25×4 50×5×2×2 90×125×8×4 活动三解决问题 1.一个盒子能装12支钢笔,每支钢笔3元钱.买这样的钢笔5盒共用多少元?(用两种方法解答) 2.一台缝纫机6小时可加工服装48件,要用5台同样的缝纫机加工400件服装,需要几小时?