二次函数教案(3篇)
【阅读指引】阿拉题库网友为您分享整理的“二次函数教案(3篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
《二次函数》教案1
二次函数=ax2+bx+c的图象
本节课在二次函数=ax2和=ax2+c的图象的基础上,进一步研究=a(x-h)2和=a(x-h)2+的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先是从=x2开始,然后是=ax2,=ax2+c,最后是=a(x-h)2,=a(x-h)2+,=ax2+bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性.
在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反思[
等探索活动,使学生达到对抛物线自身特点的认识和对二次函数性质的理解.并能利用它的性质解决问题.
二次函数=ax2+bx+c的图象(一)
教学目标
(一)教学知识点[
1.能够作出函数=a(x-h)2和=a(x-h)2+的图象,并能理解它与=ax2的图象的关系.理解a,h,对二次函数图象的影响.
2.能够正确说出=a(x-h)2+图象的开口方向、对称轴和顶点坐标.
(二)能力训练要求
1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解.
2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力.
(三)情感与价值观要求
1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.
2.让学生学会与人合作,并能与他人交流思维的过程和结果.
教学重点[:]
1.经历探索二次函数=ax2+bx+c的图象的作法和性质的过程.
2.能够作出=a(x-h)2和=a(x-h)2+的图象,并能理解它与=ax2的图象的关系,理解a、h、对二次函数图象的影响.
3.能够正确说出=a(x-h)2+图象的开口方向、对称轴和顶点坐标.
教学难点
能够作出=a(x-h)2和=a(x-h)2+的图象,并能够理解它与=ax2的图象的关系,理解a、h、对二次函数图象的影响.
教学方法
探索——比较——总结法.
教具准备
投影片四张
第一张:(记作2.4.1 A)
第二张:(记作2.4.1 B)
第三张:(记作2.4.1 C)
第四张:(记作2.4.1 D)
教学过程
Ⅰ.创设问题情境、引入新课
[师]我们已学习过两种类型的二次函数,即=ax2与=ax2+c,知道它们都是轴对称图形,对称轴都是轴,有最大值或最小值.顶点都是原点.还知道=ax2+c的图象是函数=ax2的图象经过上下移动得到的,那么=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题.
Ⅱ.新课讲解
一、比较函数=3x2与=3(X-1)2的图象的性质.
投影片:(2.4 A)
(1)完成下表,并比较3x2和3(x-1)2的值,
它们之间有什么关系?
X-3-2-101234
3x2
3(x-1)2
(2)在下图中作出二次函数=3(x-1)2的图象.你是怎样作的?
(3)函数=3(x-1)2的图象与=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(4)x取哪些值时,函数=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数=3(x-1)2的值随x值的增大而减小?
[师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结.
[生](1)第二行从左到右依次填:27.12,3,0,3, 12,27,48;第三行从左到右依次填48,27,12,3,0,3, 12,27.
(2)用描点法作出=3(x-1)2的图象,如上图.
(3)二次函数)=3(x-1)2的图象与=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).
(4)当x>1时,函数=3(x-1)2的值随x值的增大而增大,x<1时,=3(x-1)2的值随x值的增大而减小.
[师]能否用移动的观点说明函数=3x2与=3(x-1)2的图象之间的关系呢?
[生]=3(x-1)2的图象可以看成是函数)=3x2的图象整体向右平移得到的。
[师]能像上节课那样比较它们图象的性质吗?
[生]相同点:
a.图象都中抛物线,且形状相同,开口方向相同.
b. 都是轴对称图形.
c.都有最小值,最小值都为0.
d.在对称轴左侧,都随x的增大而减小.在对称轴右侧,都随x的增大而增大.
不同点:
a.对称轴不同,=3x2的对称轴是轴=3(x-1)2的对称轴是x=1.
b. 它们的位置不问.[:]
c. 它们的顶点坐标不同. =3x2的顶点坐标为(0,0),=3(x-1)2的顶点坐标为(1,0),
联系:
把函数=3x2的图象向右移动一个单位,则得到函数=3(x-1)2的图像.
二、做一做
投影片:(2.4.1 B)
在同一直角坐标系中作出函数=3(x-1)2和=3(x-1)2+2的图象.并比较它们图象的性质.
[生]图象如下
它们的图象的性质比较如下:
相同点:
a.图象都是抛物线,且形状相同,开口方向相同.
b. 都足轴对称图形,对称轴都为x=1.
c. 在对称轴左侧,都随x的增大而减小,在对称轴右侧,都随x的增大而增大.
不同点:
a.它们的顶点不同,最值也不同。=3(x-1)2的顶点坐标为(1.0),最小值为0.=3(x-1)2+2的顶点坐标为(1,2),最小值为2.
b. 它们的位置不同.
联系:
把函数=3(x-1)2的图象向上平移2个单位,就得到了函数=3(x-1)2+2的图象.
三、总结函数=3x2,=3(x-1)2,=3(x-1)2+2的图象之间的关系.
[师]通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗?
[生]可以.
二次函数=3x2,=3(x-1)2,=3(x-1)2+2的图象都是抛物线.并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数=3x2的图象向右平移1个单位,就得到函数=3(x-1)2的图象;再向上平移2个单位,就得到函数=3(x-1)2+2的图象.
[师]大家还记得=3x2与=3x2-1的图象之间的关系吗?
[生]记得,把函数=3x2向下平移1个平位,就得到函数=3x2-1的图象.
[师]你能系统总结一下吗?
[生]将函数=3x2的图象向下移动1个单位,就得到了函数=3x2-1的图象,向上移动1个单位,就得到函数=3x2+1的图象;将=3x2的图象向右平移动1个单位,就得到函数=3(x-1)2的图象:向左移动1个单位,就得到函数=3(x+1)2的图象;由函数=3x2向右平移1个单位、再向上平移2个单位,就得到函数=3(x-1)2+2的图象.
[师]下面我们就一般形式来进行总结.
投影片:(2.4.1 C)
一般地,平移二次函数=ax2的图象便可得到二次函数为=ax2+c,=a(x-h)2,=a(x-h)2+的图象.
(1)将=ax2的图象上下移动便可得到函数=ax2+c的图象,当c>0时,向上移动,当c<0时,向下移动.
(2)将函数=ax2的图象左右移动便可得到函数=a(x-h)2的图象,当h>0时,向右移动,当h<0时,向左移动.
(3)将函数=ax2的图象既上下移,又左右移,便可得到函数=a(x-h)+的图象.
因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,的值有关.
下面大家经过讨论之后,填写下表:
=a(x-h)2+开口方向对称轴顶点坐标
a>0
a<0
四、议一议
投影片:(2,4.1 D)
(1)二次函数=3(x+1)2的图象与二次函数=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(2)二次函数=-3(x-2)2+4的图象与二次函数=-3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(3)对于二次函数=3(x+1)2,当x取哪些值时,的值随x值的增大而增大?当x取哪些值时,的值随x值的增大而减小?二次函数=3(x+1)2+4呢?
[师]在不画图象的情况下,你能回答上面的问题吗?
[生](1)二次函数=3(x+1)2的图象与=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,=3(x+1)2的图象的对称轴是直线x=-1,顶点坐标是(-1,0).只要将=3x2的图象向左平移1个单位,就可以得到=3(x+1)2的图象.
(2)二次函数=-3(x-2)2+4的图象与=-3x2的图象形状相同,只是位置不同,将函数=-3x2的图象向右平移2个单位,就得到=-3(x-2)2的图象,再向上平移4个单位,就 得到=-3(x-2)2+4的图象=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4).
(3)对于二次函数=3(x+1)2和=3(x+1)2+4,它们的对称轴都是x=-1,当x-1时,的值随x值的增大而增大.
Ⅲ.课堂练习
随堂练习
Ⅳ.课时小结
本节课进一步探究了函数=3x2与=3(x-1)2,=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论.
Ⅴ.课后作业
习题2.4
Ⅵ.活动与探究
二次函数= (x+2)2-1与= (x-1)2+2的图象是由函数= x2的图象怎样移动得到的?它们之间是通过怎样移动得到的?
解:= (x+2)2-1的图象是由= x2的图象向左平移2个单位,再向下平移1个单位得到的,= (x-1)2+2的图象是由= x2的图象向右平移1个单位,再向上平移2个单位得到的.
= (x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到= (x-1)2+2的图象.
= (x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到= (x+2)2-1的图象.
板书设计
4.2.1 二次函数=ax2+bx+c的图象(一) 一、1. 比较函数=3x2与=3(x-1)2的
图象和性质(投影片2.4.1 A)
2.做一做(投影片2.4.1 B)
3.总结函数=3x2,=3(x-1)2= 3(x-1)2+2的图象之间的关系(投影片2.4.1 C)
4.议一议(投影片2.4.1 D)
二、课堂练习
1.随堂练习
2.补充练习
三、课时小结
四、课后作业
备课资料
参考练习
在同一直角坐标系内作出函数=- x2,=- x2-1,=- (x+1)2-1的图象,并讨论它们的性质与位置关系.
解:图象略
它们都是抛物线,且开口方向都向下;对称轴分别为轴轴,直线x=-1;顶点坐标分别为(0,0),(0,-1),(-1,-1).
=- x2的图象向下移动1个单位得到=- x2-1 的图象;=- x2的图象向左移动1个单位,向下移动1个单位,得到=- (x+1)2-1的图象.
次函数数学教案2
知识与技能
1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质。
2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题。
过程与方法
经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯。
情感态度
通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性。
教学重点
1.会画y=ax2(a>0)的图象。
2.理解,掌握图象的性质。
教学难点
二次函数图象及性质探究过程和方法的体会教学过程。
一、情境导入,初步认识
问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?
问题2 如何用描点法画一个函数图象呢?
教学说明
①略;
②列表、描点、连线。
二、思考探究,获取新知
探究1 画二次函数y=ax2(a>0)的图象。
画二次函数y=ax2的图象。
教学说明
①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的'图象,同学们画好后相互交流、展示,表扬画得比较规范的同学。
②从列表和描点中,体会图象关于y轴对称的特征。
③强调画抛物线的三个误区。
误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势。
误区二:并非对称点,存在漏点现象,导致抛物线变形。
误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止。
《二次函数》教案3
教学目标
1、经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点
2、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题
3、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究
教学重点和难点
重点:用三种方式表示变量之间二次函数关系
难点:根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究
教学过程设计
一、从学生原有的认知结构提出问题
这节课,我们来学习二次函数的三种表达方式。
二、师生共同研究形成概念
1、用函数表达式表示
☆做一做书本P56矩形的周长与边长、面积的关系
鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。
比较全面、完整、简单地表示出变量之间的关系
2、用表格表示
☆做一做书本P56填表
由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。
表格表示可以清楚、直接地表示出变量之间的数值对应关系
3、用图象表示
☆议一议书本P56议一议
关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。
可以直观地表示出函数的变化过程和变化趋势
☆做一做书本P57
4、三种方法对比
☆议一议书本P58议一议
函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。
在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。