首页 > 学习资料 > 高中教案 >

高二数学教案范本(精彩4篇)

网友发表时间 1237877

【前言导读】此篇优秀教案“高二数学教案范本(精彩4篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

高二数学教案【第一篇】

第06课时

2、2、3 直线的参数方程

学习目标

1.了解直线参数方程的条件及参数的意义;

2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习过程

一、学前准备

复习:

1、若由 共线,则存在实数 ,使得 ,

2、设 为 方向上的 ,则 =︱ ︱ ;

3、经过点 ,倾斜角为 的直线的普通方程为 。

二、新课导学

探究新知(预习教材P35~P39,找出疑惑之处)

1、选择怎样的参数,才能使直线上任一点M的坐标 与点 的坐标 和倾斜角 联系起来呢?由于倾斜角可以与方向联系, 与 可以用距离或线段 数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。

如图,在直线上任取一点 ,则 = ,

而直线

的单位方向

向量

=( , )

因为 ,所以存在实数 ,使得 = ,即有 ,因此,经过点

,倾斜角为 的直线的参数方程为:

2.方程中参数的几何意义是什么?

应用示例

例1.已知直线 与抛物线 交于A、B两点,求线段AB的长和点 到A ,B两点的距离之积。(教材P36例1)

解:

例2.经过点 作直线 ,交椭圆 于 两点,如果点 恰好为线段 的中点,求直线 的方程。(教材P37例2)

解:

反馈练习

1.直线 上两点A ,B对应的参数值为 ,则 =( )

A、0 B、

C、4 D、2

2.设直线 经过点 ,倾斜角为 ,

(1)求直线 的参数方程;

(2)求直线 和直线 的交点到点 的距离;

(3)求直线 和圆 的两个交点到点 的距离的和与积。

三、总结提升

本节小结

1.本节学习了哪些内容?

答:1.了解直线参数方程的条件及参数的意义;

2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习评价

一、自我评价

你完成本节导学案的情况为( )

A.很好 B.较好 C. 一般 D.较差

课后作业

1. 已知过点 ,斜率为 的直线和抛物线 相交于 两点,设线段 的中点为 ,求点 的坐标。

2.经过点 作直线交双曲线 于 两点,如果点 为线段 的中点,求直线 的方程

3.过抛物线 的焦点作倾斜角为 的弦AB,求弦AB的长及弦的中点M到焦点F的距离。

高二数学优秀教案【第二篇】

一、学情分析

本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。

二、考纲要求

1、会用坐标表示平面向量的加法、减法与数乘运算。

2、理解用坐标表示的平面向量共线的条件。

3、掌握数量积的坐标表达式,会进行平面向量数量积的运算。

4、能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件。

三、教学过程

(一)知识梳理:

1、向量坐标的求法

(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标。

(2)设A(x1,y1),B(x2,y2),则

=xxxxxxxxxxxxxxxx_

||=xxxxxxxxxxxxxx_

(二)平面向量坐标运算

1、向量加法、减法、数乘向量

设=(x1,y1),=(x2,y2),则

+=-=λ=。

2、向量平行的坐标表示

设=(x1,y1),=(x2,y2),则∥?xxxxxxxxxxxxxxxx.

(三)核心考点·习题演练

考点1.平面向量的坐标运算

例1.已知A(-2,4),B(3,-1),C(-3,-4)。设(1)求3+-3;

(2)求满足=m+n的实数m,n;

练:(20xx江苏,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)

(m,n∈R),则m-n的值为

考点2平面向量共线的坐标表示

例2:平面内给定三个向量=(3,2),=(-1,2),=(4,1)

若(+k)∥(2-),求实数k的值;

练:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4)。若λ为实数,(+λ)∥,则λ=(  )

思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?

方法总结:

1、向量共线的两种表示形式

设a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②。

2、两向量共线的充要条件的作用

判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值。

考点3平面向量数量积的坐标运算

例3“已知正方形ABCD的边长为1,点E是AB边上的动点,

则的值为;的值为。

提示解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷。

练:(20xx,安徽,13)设=(1,2),=(1,1),=+k.若⊥,则实数k的值等于(  )

思考两非零向量⊥的充要条件:·=0?     。

解题心得:

(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.

(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷。

(3)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0.

考点4:平面向量模的坐标表示

例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的值为(  )

练:(20xx,上海,12)

在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则的取值范围是?

解题心得:

求向量的模的方法:

(1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;

(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解。.

五、课后作业(课后习题1、2题)

高二数学优秀教案【第三篇】

[核心必知]

1、预习教材,问题导入

根据以下提纲,预习教材P2~P5,回答下列问题。

(1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤?

提示:分五步完成:

第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③

第二步,解③,得x=b2c1-b1c2a1b2-a2b1.

第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④

第四步,解④,得y=a1c2-a2c1a1b2-a2b1.

第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.

(2)在数学中算法通常指什么?

提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

2、归纳总结,核心必记

(1)算法的概念

12世纪的算法指的是用阿拉伯数字进行算术运算的过程续表

数学中的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤

现代算法通常可以编成计算机程序,让计算机执行并解决问题

(2)设计算法的目的

计算机解决任何问题都要依赖于算法。只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题。

[问题思考]

(1)求解某一个问题的算法是否是的?

提示:不是。

(2)任何问题都可以设计算法解决吗?

提示:不一定。

高二数学优秀教案【第四篇】

教学目标

1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;

2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

教学重点与难点

重点:命题的概念、命题的构成

难点:分清命题的条件、结论和判断命题的真假

教学过程

一、复习回顾

引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?

二、新课教学

下列语句的表述形式有什么特点?你能判断他们的真假吗?

(1)若直线a∥b,则直线a与直线b没有公共点.

(2)2+4=7.

(3)垂直于同一条直线的两个平面平行.

(4)若x2=1,则x=1.

(5)两个全等三角形的面积相等.

(6)3能被2整除.

讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

抽象、归纳:

1、命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.

命题的定义的要点:能判断真假的陈述句.

在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

例1:判断下列语句是否为命题?

(1)空集是任何集合的子集.

(2)若整数a是素数,则是a奇数.

(3)指数函数是增函数吗?

(4)若平面上两条直线不相交,则这两条直线平行.

(5)=-2.

(6)x>15.

让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.

解略。

引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?

通过对此问的思考,学生将清晰地认识到定理、推论都是命题.

过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?

2、命题的构成――条件和结论

定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.

例2:指出下列命题中的条件p和结论q,并判断各命题的真假.

(1)若整数a能被2整除,则a是偶数.

(2)若四边行是菱形,则它的对角线互相垂直平分.

(3)若a>0,b>0,则a+b>0.

(4)若a>0,b>0,则a+b<0.

(5)垂直于同一条直线的两个平面平行.

此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。

此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.

解略。

过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.

3、命题的分类

真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.

假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.

强调:

(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.

(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。

判断一个数学命题的真假方法:

(1)数学中判定一个命题是真命题,要经过证明.

(2)要判断一个命题是假命题,只需举一个反例即可.

例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:

(1)面积相等的两个三角形全等。

(2)负数的立方是负数。

(3)对顶角相等。

分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。

三、巩固练习:

P4第2,3。

四、作业:

P8:习题1.1A组~第1题

五、教学反思

师生共同回忆本节的学习内容.

1、什么叫命题?真命题?假命题?

2、命题是由哪两部分构成的`?

3、怎样将命题写成“若P,则q”的形式.

4、如何判断真假命题.

相关推荐

热门文档

18 1237877